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a b s t r a c t

While numerous computational methods have been developed that use genome-scale models to
propose mutants for the purpose of metabolic engineering, they generally compare mutants based on
a single criteria (e.g., production rate at a mutant's maximum growth rate). As such, these approaches
remain limited in their ability to include multiple complex engineering constraints. To address this
shortcoming, we have developed feasible space and shadow price constraint (FaceCon and ShadowCon)
modules that can be added to existing mixed integer linear adaptive evolution metabolic engineering
algorithms, such as OptKnock and OptORF. These modules allow strain designs to be identified amongst
a set of multiple metabolic engineering algorithm solutions that are capable of high chemical production
while also satisfying additional design criteria. We describe the various module implementations and
their potential applications to the field of metabolic engineering. We then incorporated these modules
into the OptORF metabolic engineering algorithm. Using an Escherichia coli genome-scale model
(iJO1366), we generated different strain designs for the anaerobic production of ethanol from glucose,
thus demonstrating the tractability and potential utility of these modules in metabolic engineering
algorithms.
& 2014 The Authors. International Metabolic Engineering Society. This is an open access article under the

CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Background

Genome-scale models (GEMS) are powerful tools allowing for
the prediction of cellular growth, flux profiles, and mutant strain
phenotypes (Orth et al., 2010). Over the last decade, with the
development of new computational algorithms, GEMS have been
used to guide the design of strains for biochemical production,
such as biofuels and commodity chemicals (reviewed in Curran
and Alper (2012), Zomorrodi et al. (2012), and Lee et al. (2012)).
While GEMs are valuable tools, new computational algorithms are
still needed to evaluate them and apply them in new ways.

Many strain design algorithms exist that identify which net-
work modifications are needed to improve chemical production.
These modifications can involve reaction deletions (OptKnock),
metabolic or regulatory gene deletions (OptGene and OptORF),
reaction additions (OptStrain and SimOptStrain), or flux increases/
decreases (OptReg, OptForce, CosMos, FSEOF) (Zomorrodi et al.,
2012; Kim and Reed, 2010; Burgard et al., 2003; Pharkya et al.,
2004; Ranganathan et al., 2010; Patil et al., 2005; Pharkya and
Maranas, 2006; Cotten and Reed, 2013; Choi et al., 2010; Kim et al.,

2011). The bi-level optimization approaches used to identify these
modifications can be computationally expensive and recent efforts
have improved their run-time performances (Patil et al., 2005;
Kim et al., 2011; Ohno et al., 2013; Lun et al., 2009; Yang et al.,
2011). Many of these metabolic engineering algorithms focus on
improving the desired chemical production when the proposed
mutant is operating at its maximal growth rate. By coupling
chemical production to growth, selection for growth rate using a
chemostat or sequential batch cultures can enrich for strains with
increased chemical production (Fong et al., 2005). One such
algorithm, OptORF, is used extensively in this work (Kim and
Reed, 2010). The OptORF algorithm extends upon OptKnock by
using gene rather than reaction deletions as potential modifica-
tions. By accounting for gene and transcriptional regulatory net-
work information, OptORF proposes deleting or overexpressing
metabolic or regulatory genes (as opposed to reaction level
deletions proposed by OptKnock) to increase chemical production.
By doing this, OptORF avoids designs that would be impossible to
implement, due to genetic interactions between reactions or
regulatory effects.

While metabolic engineering methods have been successful
(Curran and Alper, 2012; Ranganathan et al., 2010; Fong et al.,
2005; Yim et al., 2011), most of these approaches cannot consider
the ramifications of undesirable suboptimal flux distributions
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(e.g. production with low productivity) (Patil et al., 2005; Feist et
al., 2010; Lin et al., 2005; Sánchez et al., 2005; Vadali et al., 2005),
or production phenotypes at or near stationary phase in batch
cultures. Additionally, these algorithms are limited in their ability
to tailor a strain's behavior to address more complex problems
(e.g., the co-utilization of multiple substrates (Gawand et al., 2013;
Lian et al., 2014; Trinh et al., 2008) or elimination of undesirable
by-products (Aristidou et al., 1994; Eiteman and Altman, 2006;
Jantama et al., 2008; Zha et al., 2009)). Consequently, while these
approaches are valuable in designing adaptive evolutionary strains
based on single criteria (e.g., high production at maximal growth
rates), they often lack the ability to efficiently propose strains
meeting multiple design criteria that are of interest to investiga-
tors. To address these problems in small networks, techniques
such as constrained minimal cut sets (Hädicke and Klamt, 2011)
can be used to allow researchers to meet additional design criteria
(e.g., elimination of undesired by-products) without affecting the
desired chemical production phenotype. Recent advances allow
enumeration of the smallest minimal cut sets in genome-scale
networks, from which constrained minimal cut sets can be
identified (von Kamp and Klamt, 2014). However, all minimal cut
sets can still not be enumerated for genome-scale networks, and
the smallest minimal cut sets identified first might not correspond
to constrained minimal cut sets meeting additional design criteria.
Additionally, strategies for finding constrained minimal cut sets
that consider transcriptional regulation, media selection or degree
of coupling between biomass and chemical production have not
been developed.

Previously, we developed the forced coupling algorithm
(FOCAL) to identify conditions (e.g., gene deletions or media
conditions) that ensure directional coupling between two fluxes
(flux through vx implies flux through vy) (Tervo and Reed, 2012).
By changing media conditions or deleting genes, FOCAL affects the
shape of the resulting feasible solution space. We also showed
how FOCAL can be modified to design a mutant strain that must
co-utilize xylose and glucose simultaneously in order to grow.
While these modifications were interesting, they did not work to
increase the overall productivity of the organism since no meta-
bolic engineering objective was included. Moreover, this approach
could only enforce directional coupling between fluxes which is
often an overly stringent condition for metabolic engineering
strain designs.

Recently, Ohno et al. (2013) used shadow prices from flux
balance analysis (FBA) solutions to guide a greedy algorithm for
increasing chemical productivity as reaction deletions are added.
Double deletion mutants with the top desired shadow prices
(which indicate the rate of change in growth divided by the rate
of change in chemical production) were used as “parent” strains to
find triple deletion knockouts with the best shadow prices. This
greedy search process, called FastPros, was repeated for up to 25
knockouts, and for each iterative screening step, any sets of
deletions which resulted in a non-negative shadow prices (indi-
cating coupling between growth and chemical production) were
stored as candidates for further analysis and excluded from further
screening. The authors then used OptKnock to maximize chemical
production using only the stored reaction knockouts found by
their FastPros process. Because they use a greedy algorithm, their
method does not guarantee that the set of knockouts with the
highest shadow prices are discovered. Additionally, since the
authors use OptKnock to propose strain designs, their approach
does not control or optimize the degree of coupling between
chemical production and cellular growth when mutants are
proposed.

Here, we have developed modules Feasible Space Constraint
(FaceCon) and Shadow Constraint (ShadowCon) modules for con-
trolling the shape an organism's feasible space. These modules

allow many additional types of design criteria to be considered
besides directional coupling. These modules can be easily added to
mixed integer linear adaptive evolution metabolic engineering
algorithms to incorporate additional design criteria, while retain-
ing the original objective of the method (e.g., coupling growth and
chemical production). Since there are often many possible solu-
tions to these strain design algorithms, embedding these modules
allows only the subset of those mutants to be found if the criteria
associated with these modules is met. Such filtering is needed as
models become larger and the computational cost (i.e., CPU time)
of generating numerous strain designs increases, due to the
combinatorial explosion associated with increasing numbers of
integer variables and integer cuts needed to find alternate solu-
tions. To date, the only type of filtering that can be done works to
prevent finding solutions that have large ranges of chemical
production at the maximum growth rate (Feist et al., 2010;
Tepper and Shlomi, 2010).

FaceCon modules are included as additional inner optimization
problems and ensure that any proposed mutant cannot operate
within a user-defined region (i.e., no feasible flux distribution can
exist within a user-defined region). By defining this excluded
region, various feasible space characteristics can be enforced.
Below we describe three FaceCon modules:

1. Coupling module: This module allows a researcher to enforce
different types of coupling (directional or weak) between a flux
of interest (vy) and another flux (vx) depending on the
formulation and parameter selection. This module can be used
to find mutants with directional coupling (i.e., flux through vx
implies flux through vy for all values of vx (Burgard et al.,
2004)) or weak coupling (where flux through vx implies flux for
vy only for some positive values of vx). Depending on how the
coupling module is implemented one can require mutants
having directional coupling, weak coupling, or either direc-
tional or weak coupling. The result of any of these implementa-
tions is that a defined portion of the vx axis is excluded from
the solution space of a proposed mutant.

2. Chemical level module: The chemical level module ensures
proposed mutants meet criteria associated with the production
level of a chemical of interest, vy (e.g., a desired product or
undesired by-product). This module finds mutants whose
solution space excludes solutions with vy below (or above) a
user-defined threshold (β) within a defined region (e.g., vy must
be greater than β when vx is greater than vmin).

3. Direct constraint module: This module is the most comprehen-
sive and with proper parameter selection can encompass the
functions of the two previous FaceCon modules. This module
allows the user to define a particular region that must be
excluded from the solution space of any proposed mutant;
thus, the researcher is able to directly influence the solution
space of any mutant proposed by a metabolic engineering
algorithm.

In the following sections, we detail the application, function
and relevant parameters for each of these FaceCon modules. We
then introduce the concept of shadow constraint (ShadowCon)
modules, which can be used to control the degree of coupling once
coupling between two fluxes occurs. To illustrate each module's
functionality and potential use, we have included the FaceCon and
ShadowCon modules as additional inner problems within the
OptORF algorithm, to find metabolic gene deletions that couple
growth and chemical production and that satisfy additional
module criteria. Additionally, to demonstrate the methods are
applicable on genome-scale networks we have applied them to
identify mutants for ethanol production using the Escherichia coli
model, iJO1366 (Orth et al., 2011). We demonstrate that when
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