

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/22140301)

Metabolic Engineering Communications

journal homepage: <www.elsevier.com/locate/mec>hanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate/mechanisms/locate

Model-driven identification of dosing regimens that maximize the antimicrobial activity of nitric oxide

Jonathan L. Robinson ^a, Richard V. Miller ^b, Mark P. Brynildsen ^{a,b,}*

^a Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA b Department of Molecular Biology, Princeton University, Princeton, NJ, USA

article info

Article history: Received 28 June 2014 Received in revised form 21 August 2014 Accepted 22 August 2014 Available online 1 September 2014

Keywords: Nitric oxide Antimicrobial Escherichia coli Respiration Nitric oxide dioxygenase Hmp Kinetic model

ABSTRACT

The antimicrobial properties of nitric oxide (NO^{*}) have motivated the design of NO^{*}-releasing materials for the treatment and prevention of infection. The biological activity of NO[®] is dependent on its delivery rate, suggesting that variable antimicrobial effects can result from identical NO[®] payloads dosed at different rates. Using a kinetic model of the Escherichia coli NO[®] biochemical network, we investigated the relationship between NO[®] delivery rate, payload, and cytotoxicity, as indicated by the duration of respiratory inhibition. At low NO[®] payloads, the model predicted greater toxicity with rapid delivery, while slower delivery was more effective at higher payloads. These predictions were confirmed experimentally, and exhibited quantitative agreement with measured $O₂$ and NO $[•]$ concentrations, and</sup> durations of respiratory inhibition. These results provide important information on key design parameters in the formulation of NO^{*}-based therapeutics, and highlight the utility of a model-based approach for the analysis of dosing regimens.

& 2014 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

NO[•] is a highly reactive metabolite whose antimicrobial activity has been harnessed by the immune system to neutralize pathogens ([Bogdan, 2001; Fang, 2004; Bowman et al., 2011; Robinson et al.,](#page--1-0) [2014](#page--1-0)). In recent years, numerous materials that enable controlled release of NO[•] to infection sites, such as nanoparticles [\(A. Friedman](#page--1-0) [et al., 2011; A.J. Friedman et al., 2011\)](#page--1-0), patches ([Sulemankhil et al.,](#page--1-0) [2012](#page--1-0)), dendrimers [\(Sun et al., 2012](#page--1-0)), and topical creams [\(Ormerod et](#page--1-0) [al., 2011\)](#page--1-0), have been synthesized, characterized, and shown to exhibit efficacy in treating antibiotic-resistant infections [\(Schairer et al.,](#page--1-0) [2012; Jones et al., 2010](#page--1-0)). Two important design parameters of such materials include the rate at which NO[•] is delivered, and the total payload that can be administered. We recently discovered that the utility of a major NO● detoxification system in Escherichia coli (Hmp; NO[•] dioxygenase) [\(Gardner et al., 1998; Stevanin et al., 2000\)](#page--1-0), and thus the toxicity of NO^{*}, depends highly on the NO^{*} delivery rate ([Robinson and Brynildsen, 2013](#page--1-0)). This phenomenon suggests that NO[•] payloads of the same total quantity but different delivery rates can vary remarkably in their cytotoxicity toward bacteria.

ⁿ Correspondence to: 205 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544, USA. Tel.: $+1$ 609 258 1995; fax: $+1$ 609 258 0211. E-mail address: mbrynild@princeton.edu (M.P. Brynildsen).

Here, we used quantitative kinetic modeling to explore the relationship between NO[®] delivery rate, total payload, and antimicrobial activity as measured by the duration of respiratory inhibition by NO^{*}. The model predicted that a faster release of NO[•] is more effective at low payloads, whereas the opposite holds true at high payloads. These predictions were confirmed experimentally by measuring NO^o and $O₂$ consumption in batch cultures of E. coli following single or co-treatment with two NO● donors with differing release kinetics. This work provides fundamental knowledge on the dependence of NO[•] toxicity on delivery rate and total dose, which is a relationship that could prove useful for selection of NO[•] dosing regimens for antimicrobial therapy.

2. Materials and methods

2.1. Kinetic modeling

Model simulations and analyses were performed in MATLAB (The MathWorks, Inc.). To simulate $[NO^o]$ and $[O₂]$ dynamics, we employed a model of NO● stress that we previously developed ([Robinson and](#page--1-0) [Brynildsen, 2013\)](#page--1-0), and added a respiratory module that allowed simulation of $O₂$ consumption from the batch culture system.

<http://dx.doi.org/10.1016/j.meteno.2014.08.001>

2214-0301/© 2014 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

2.1.1. Incorporation of a respiratory module

Aerobic respiration was incorporated through the addition of 4 reactions (NADH dehydrogenases NDH-1 and NDH-2, and $O₂$ consumption by cytochromes bo and bd-I), 14 kinetic parameters, and 4 species ([Table S1\)](#page--1-0). The third E. coli cytochrome oxidase, bd-II, was not included, as its activation is generally limited to conditions of phosphate starvation, entry into stationary phase, or anaerobiosis ([Atlung and Brondsted, 1994; Dassa et al., 1991\)](#page--1-0). NADH dehydrogenase I (NDH-I) contains 9 iron-sulfur ([Fe–S]) clusters (two [2Fe–2S] and seven [4Fe–4S]) ([Euro et al., 2008](#page--1-0)), and therefore could potentially be inhibited by NO[•], which is known to react rapidly with [Fe–S] clusters [\(Gardner et al., 1997; Foster and](#page--1-0) [Cowan, 1999; Crack et al., 2011\)](#page--1-0). This effect was addressed by incorporating a term into the NDH-1 rate equation which scales the reaction rate by the ratio of undamaged to total [Fe–S] clusters. Of the respiratory kinetic parameters, 4 were found to be variable within the literature, and only approximate concentrations of NADH dehydrogenases I and II, ubiquinone-8, ubiquinol-8 and cytochromes bo and bd were available. We therefore optimized this set of 10 uncertain parameters with experimentally-measured $[O_2]$ data from aerobic, exponential-phase *E. coli* cultivated in our system in the absence of nitrosative stress ([Table S2](#page--1-0) and [Fig. S1\)](#page--1-0).

2.1.2. Simulation of NONOate co-administration

To simulate the simultaneous delivery of two NONOates with different NO[•]-release kinetics, an additional NONOate species and dissociation reaction were incorporated into the model.

2.2. Experimental measurements

2.2.1. Chemicals

The growth media used in all experiments was MOPS minimal media (Teknova) with 10 mM glucose. DPTA NONOate, (Z)-1-[N- (3-aminopropyl)-N-(3-ammoniopropyl)amino]diazen-1-ium-1,2 diolate, and PAPA NONOate, (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (Cayman Chemical), were dissolved in ice-cold 10 mM NaOH prior to use. Potassium cyanide (KCN; Sigma Life Science) was dissolved in sterile, deionized H_2O at a concentration of 1 M.

2.2.2. Bacterial strains

All experiments in this study were performed with E. coli K-12 MG1655.

2.2.3. Bioreactor

A disposable batch bioreactor, identical to that described previously ([Robinson and Brynildsen, 2013](#page--1-0)), was used to facilitate measurements with the NO^o and $O₂$ sensors. Briefly, the bioreactor consisted of a sterile, 50 mL polypropylene conical tube (Falcon[®]) suspended in a magnetically-stirred water bath maintained at 37 °C. The 50 mL conical tube was open to the air, contained 10 mL of culture, and was stirred with a 0.5 in. magnetic stir bar.

2.2.4. Detection of NO $^{\bullet}$ and O₂

The concentrations of NO $^{\bullet}$ and O_{2} were measured continuously $(\geq 1$ sample per second) in the bioreactor culture using a NO[•] sensor (2 mm ISO-NOP, World Precision Instruments, Inc.) and an O2 sensor (3 mm OXROB10 Oxygen Probe with FireStingO2 meter, PyroScience GmbH), respectively. The sensors were suspended approximately 3 mm below the culture liquid surface, and clamped in place throughout the duration of the assay.

2.2.5. NO[•] stress assay

Bacterial growth and NO● treatment methods and conditions were identical to those reported previously ([Robinson and](#page--1-0) [Brynildsen, 2013](#page--1-0)), with two modifications to facilitate $O₂$ measurements: (1) cells were treated with NO[•] immediately after resuspension in the bioreactor rather than allowing a \sim 45 min adjustment period before treatment, to ensure greater consistency among initial $[O_2]$; (2) the cells were delivered to a final OD_{600} of 0.1 rather than 0.05, to amplify $[O_2]$ changes caused by cellular processes, and thus improve their detection. For the KCN-treated $O₂$ consumption assay [\(Fig. S2\)](#page--1-0), 1 mM KCN was delivered to the cells during resuspension, and to the 10 mL of fresh media in the bioreactor prior to inoculation.

2.2.6. Measurement of extracellular parameters

Kinetic parameters associated with extracellular processes specific to the experimental system were determined from $[O_2]$ and [NO[®]] measurements in cell-free growth media [\(Table S3\)](#page--1-0), as described previously ([Robinson and Brynildsen, 2013\)](#page--1-0). Briefly, the volumetric mass transfer coefficient of O_2 ($k_L a_{O2}$) was calculated from the $[O_2]$ curve following media degassing with N_2 . The NO[•] volumetric mass transfer coefficient ($k_L a_{\text{NO}}$), autoxidation rate constant $(k_{\text{NO'-O}_2})$, and dissociation rate of DPTA $(k_{\text{NONoate, DPTA}})$, were optimized to fit the [NO^{*}] curve and final (12 h) $NO_2^$ concentration resulting from the addition of 500 μM DPTA to cell-free media (Fig. [S3](#page--1-0)). The dissociation rate of PAPA (k_{NONOate} , PAPA) was also determined, using an [NO[®]] curve measured following the treatment of cell-free media with 500 μM PAPA ([Fig. S3](#page--1-0)).

2.3. Parametric analysis and optimization

2.3.1. Optimization of uncertain cellular parameters

Uncertain parameters were defined as those whose value varied widely in the literature, or were unavailable. Given the difference in NO[®] treatment protocol from our previous study ([Robinson and Brynildsen, 2013](#page--1-0)) (dosing immediately after resuspension into the bioreactor, rather than allowing a pre-growth period), as well as the inclusion of the new respiratory module and an additional dataset ($[O₂]$ curve), 37 uncertain cellular parameters were optimized to simultaneously capture the [NO[®]] and [O2] dynamics of an aerobic, exponential-phase E. coli culture treated with 500 μM DPTA ([Table S4\)](#page--1-0). The optimization procedure was identical to the previous approach except that $[O_2]$ data was included and optimized simultaneously with the [NO●] curve. The set of parameter values yielding the minimum sum of the squared residuals (SSR) between experimental and simulated [NO[®]] and $[O₂]$ curves were selected as the optimal set.

2.3.2. Parametric analysis

Parametric analyses were conducted to determine which parameters were informed from the optimization of the respiratory module with untreated O_2 consumption data [\(Table S2](#page--1-0)), and optimization of the cellular parameters with the 500 μM DPTA [NO[®]] and [O₂] curves [\(Table S4](#page--1-0)). Parameters were individually varied within their literature or physiological ranges, and the resulting effect on SSR between simulated and measured concentrations was calculated. Those exhibiting at least a 5% change in SSR were considered to be informed as a result of the optimization.

3. Results

Given the importance of NO^{\bullet} delivery kinetics on the distribution of NO● in E. coli ([Robinson and Brynildsen, 2013](#page--1-0)), we used a quantitative kinetic model to explore the relationship between NO[•] delivery rate and antimicrobial efficacy, and examined how this relationship is affected by total NO● payload. One of the key Download English Version:

<https://daneshyari.com/en/article/571860>

Download Persian Version:

<https://daneshyari.com/article/571860>

[Daneshyari.com](https://daneshyari.com)