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a  b  s  t  r  a  c  t

Crash  data  can  often  be characterized  by  over-dispersion,  heavy  (long)  tail  and  many  observations  with
the  value  zero.  Over  the  last few  years,  a small  number  of  researchers  have  started  developing  and  apply-
ing novel  and  innovative  multi-parameter  models  to analyze  such  data. These  multi-parameter  models
have  been  proposed  for overcoming  the  limitations  of  the  traditional  negative  binomial  (NB)  model,
which  cannot  handle  this  kind  of  data  efficiently.  The  research  documented  in  this paper  continues  the
work  related  to multi-parameter  models.  The  objective  of  this  paper  is  to document  the  development  and
application  of  a flexible  NB generalized  linear  model  with randomly  distributed  mixed  effects  character-
ized  by  the  Dirichlet  process  (NB-DP)  to  model  crash  data.  The  objective  of  the study  was accomplished
using  two  datasets.  The  new  model  was  compared  to the  NB and  the recently  introduced  model  based  on
the  mixture  of  the NB  and  Lindley  (NB-L)  distributions.  Overall,  the research  study  shows  that  the  NB-DP
model  offers  a better  performance  than  the  NB  model  once  data  are  over-dispersed  and  have  a heavy  tail.
The NB-DP  performed  better  than  the  NB-L  when  the  dataset  has  a heavy  tail, but  a smaller  percentage  of
zeros.  However,  both  models  performed  similarly  when  the  dataset  contained  a large  amount  of  zeros.  In
addition to  a greater  flexibility,  the NB-DP  provides  a clustering  by-product  that  allows  the  safety  analyst
to better  understand  the characteristics  of  the  data,  such  as the  identification  of  outliers  and  sources  of
dispersion.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Regression models have different applications in highway
safety. They can be used for predicting the number of crashes,
evaluating roadway safety, screening variables and identifying haz-
ardous sites. As documented in Lord and Mannering (2010) and
more recently in Mannering and Bhat (2014), extensive research
studies have been devoted to develop innovative and novel sta-
tistical models to estimate or predict the number of crashes and
evaluate roadway safety. These statistical models specifically deal
with unique characteristics that are associated with crash data. As
such, crash data can often be characterized with over-dispersion,
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heavy tail and many observations with the value zero. These unique
characteristics inspired a few researchers to propose several new
models that aimed at overcoming the limitations associated with
the most commonly used model in highway safety literature, the
negative binomial (NB) model (also known as the Poisson-gamma
model).

Recent research has shown that the NB model can be signifi-
cantly affected by datasets characterized by a heavy tail (Zou et al.,
2015). According to Guo and Trivedi (2002), the NB regression
model cannot properly capture the heavy tail because a negligible
probability is assigned to large counts. Heavy tails can be caused by
the data generating process itself (i.e., including observations with
very large counts), or they can also be attributed to datasets that
have excess zeros. In the latter case, the heavy tails are created by
shifting the overall sample mean closer to zero, which increases
the spread of the observations (Lord and Geedipally, 2016). Over
the last two or three years, a new series of multi-parameter models
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(i.e., models with several shape/scale parameters) that mixes the
NB distribution with other distributions have been developed for
analyzing such datasets. The NB-Lindley (NB-L) model (Geedipally
et al., 2012) and the NB-generalized exponential (NB-GE) (Vangala
et al., 2015) are examples of such types of models. This paper con-
tinues describing research in this line of modeling work.

A recurring theme in many multi-parameter models is to con-
sider a mixing distribution at the heart of the generative model. For
example, one can see the NB as a Poisson-gamma mixture or the
NB-L as a mixture of the NB and the Lindley distributions (note:
the Lindley distribution itself is a mixture of two Gamma  distri-
butions). There are primarily three major ingredients to eliciting
such mixtures, which offer a greater degree of flexibility in model
construction:

1 The mixing weights: the mixing weights determine the relative
weight of the individual mixing components.

2 The shape and characteristics of the mixing components or the
constituent members of the mixtures, and

3 The level: in the context of hierarchical/multi-level modeling, at
which level the mixture distribution is elicited.

A transportation safety analyst might have a preference to
choose or rather not to choose a particular mixture. In all cases,
the analyst is required to make certain assertions about the mix-
ture components. One way to retain the modeling flexibility and
yet not be overly concerned about the assertions is to express the
uncertainty explicitly by considering a random mixing distribution.
The Dirichlet process (DP), a widely used prior in Bayesian non-
parametric literature, allows such representation (Antoniak, 1974;
Escobar and West, 1995). One way to think about the DP is as an
infinite mixture distribution, where the number of unique compo-
nents and the component characteristics themselves can be learned
from the data.

There has been a phenomenal growth in theory, inference and
applications concerning the DP and its related processes in the last
decade; recent monographs on Bayesian nonparametric devoting
significant portion on the DP and related processes is a testimony
to that effect (Hjort et al., 2010; Mitra and Muller, 2015). On
the application side, the DP has been applied in numerous fields
ranging from network modeling (Ghosh et al., 2010) to Bioinfor-
matics (Dhavala et al., 2010; Argiento et al., 2015) to Psychometrics
(Miyazaki and Hoshino, 2009) to name a few. In particular, the
application of the DP to account for over-dispersion in count data
has been considered in Mukhopadhyay and Gelfand (1997) and
Carota and Parmigiani (2002), with Binomial and Poisson based
likelihoods. More details about the DP, its structure and compu-
tational details are discussed in Sections 2 and 6.

The objective of this study is to develop and document a new
method to model over-dispersed data with a heavy tail. The model
is introduced based on the Bayesian hierarchical modeling frame-
work as a mixture of the NB distribution and a random distribution
characterized by the DP. The proposed model can be motivated,
first, by looking at the NB model as a mixture of the Poisson and
Gamma  distributions. As an extension of the Poisson model, the
Poisson-gamma was developed assuming that the Poisson param-
eter is measured with a random error; this random error itself is
gamma  distributed. The Poisson-gamma mixture is thought to be
a better alternative to accommodate possible over-dispersion in
data (Hilbe, 2011). Second, it can be motivated by looking at the
NB-L model as a mixture of the negative binomial and the Lind-
ley distributions. The NB-L model can overcome the NB limitations
when data are over-dispersed and have many zeros. Essentially,
as discussed above, although mixture models are providing better
alternatives, they assume the shape and density of the distribu-
tions to be fixed. However, we can obtain even more flexibility by

assuming that the mixing distribution itself is random. Given this
motivation in mind, the current research plans to develop a model
as a mixture of the negative binomial and a random distribution
characterized by the DP.

In addition to providing greater flexibility, the proposed model
groups crash data into a finite number of clusters as one of its by-
products. The clustering property of the mixture model can lend
insights to learn more about the domain or the data. This can be
used to (1) identify outliers; (2) study the sites that fall into the
same clusters to identify the safety issues and get insights to imple-
ment appropriate countermeasures; and (3) examine sources of
dispersions (Peng et al., 2014).

2. Characteristics of the Dirichlet process (DP)

Traditionally, the Bayesian parametric inference mechanism
considers a parametric distribution F0(.|�), where � is a finite vec-
tor of parameters, as a prior for the unknown parameter. However,
constraining the model within specific parametric families could
limit the scope of the inference. To overcome this difficulty, in
context of the Bayesian nonparametric (or semiparametric) mod-
eling, a random prior distribution is considered for the parameter
as opposed to choosing a prior distribution from a known para-
metric family. The prior is placed over infinite-dimension space of
distribution functions. In that sense, it gives more flexibility to the
parameter inference mechanism by providing a wide range of prior
distributions.

The DP (Ferguson, 1973, 1974) is a stochastic process that is usu-
ally used as a prior in Bayesian nonparametric (or semiparametric)
modeling. Escobar and West (1998) define the DP  as a random prob-
ability measure over the space of all probability measures. In that
sense, the DP is considered as a distribution over all possible distri-
butions; that is, each draw from the DP is itself a distribution. Below,
we provide a formal definition and characterization of the DP. For
a gentle introduction and motivation to DP as an extension of the
finite dimensional mixtures to infinite dimensional, the interested
readers are referred to Teh (2010) and Gelman et al. (2014).

Let A1, A2, .., Ar be any finite measurable partitions of the
parameter space (�). Let us assume � be a positive real num-
ber and F0(.|�) be a continuous distribution over �.  Then,
F (.) ∼DP

(
�, F0(.|�)

)
if and only if (Escobar and West, 1998):

(F (A1) , F (A2) , . . .,  F (Ar)) ∼
Dirichlet

(
�F0
(
A1|�

)
, �F0

(
A2|�

)
, . . .,  �F0

(
Ar |�
))

(1)

where � is defined as the precision (or concentration) parameter
and F0(.|�) as the base (or baseline) distribution. Note that based
on the Dirichlet distribution properties, for each partition A ⊂ �,
we have:

E (F (A)) =  F0(A|�)

var (F (A)) =
F0
(
A|�
)  (

1 − F0
(
A|�
))

1 + �

Therefore, the base distribution F0(.|�) and the precision param-
eter � play significant roles in the DP definition. The expectation of
the random distribution F (.) is the base distribution F0

(
.|�
)

. Like-
wise, the precision parameter � controls the variance of the random
distribution around its mean. In other words, � measures the vari-
ability of the target distribution around the base distribution. As
� → ∞,  we would have F (.) → F0(.|�) while, on the other hand, as
� → 0, the random distribution F (.) would deviate further away
from F0(.|�).

Eq. (1) defines the DP indirectly through the marginal proba-
bilities assigned to finite number of partitions. Therefore, it gives
no intuition on realizations of F (.) ∼DP

(
�, F0(.|�)

)
. To simulate
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