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ABSTRACT
BACKGROUND: Midbrain dopaminergic neurons code a computational quantity, reward prediction error (RPE),
which has been causally related to learning. Recently, this insight has been leveraged to link phenomenological and
biological levels of understanding in psychiatric disorders, such as schizophrenia. However, results have been mixed,
possibly due to small sample sizes. Here we present results from two studies with relatively large sample sizes to
assess ventral striatum (VS) RPE in schizophrenia.
METHODS: In the current study we analyzed data from two independent studies, involving a total of 87 chronic
medicated schizophrenia patients and 61 control subjects. Subjects completed a probabilistic reinforcement-learning
task in conjunction with functional magnetic resonance imaging scanning. We fit each participant’s choice behavior
to a Q-learning model and derived trialwise RPEs. We then modeled blood oxygen level–dependent (BOLD) signal
data with parametric regressor functions using these values to determine whether patient and control groups differed
in prediction error–related BOLD signal modulations.
RESULTS: Both groups demonstrated robust VS RPE BOLD activations. Interestingly, these BOLD activation
patterns did not differ between groups in either study. This was true when we included all participants in the analysis,
as well as when we excluded participants whose data was not sufficiently fit by the models.
CONCLUSIONS: These data demonstrate the utility of computational methods in isolating or testing underlying
mechanisms of interest in psychiatric disorders. Importantly, similar VS RPE signal encoding across groups suggests
that this mechanism does not drive task deficits in these patients. Deficits may instead stem from aberrant prefrontal
or parietal circuits associated with maintenance and selection of goal-relevant information.
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Schizophrenia (SZ) is associated with a diminished ability to use
reward history to adaptively guide behavior. These deficits have
been shown across a wide variety of tasks and have been
associated with important aspects of the illness (1). Although
previous studies have established a broad reward-learning deficit
in SZ, most rely solely on standard tasks metrics (e.g., task
accuracy) and neuroimaging approaches, which do not always
clearly delineate underlying psychological and neural mechanisms.
This limits etiological understanding of the specific neural circuits,
neurotransmitters, and cognitive/emotional processes that give
rise to these deficits. Methods in computational psychiatry hold
the particular advantage of specifying such broadly defined
deficits by isolating underlying mechanisms of interest.

Importantly, reward-learning impairment could reflect a number
of underlying mechanisms. For example, it could emerge from
abnormal representations of the expected value of actions, or from
disrupted signaling of mismatches between expected and
obtained outcomes, i.e., reward prediction errors (RPEs) (2,3).
Reinforcement learning is a powerful framework for quantifying
and linking such mechanisms to underlying biology (4). For
example, a robust finding in the animal literature is that RPEs
are coded by the phasic firing of midbrain dopaminergic neurons

(5). More recently, human functional magnetic resonance imaging
(fMRI) studies have demonstrated RPE encoding in the ventral
striatum (VS) (a target region of midbrain dopaminergic neurons)
extending findings observed in animals (6,7). These findings have
been instrumental because they link adaptive learning to dopami-
nergic signaling through an intermediate computational mecha-
nism (RPE signaling). In the current article, we aim to demonstrate
how methods in the field of computational psychiatry, particularly
reinforcement-learning algorithms, hold particular promise in
clarifying the role of specific mechanisms potentially contributing
to reward-learning impairments. Specifically, we use two relatively
large samples to examine the integrity of neural indicators of RPE
in SZ (8–10).

Dopamine dysregulation is associated with SZ, including
increased striatal dopamine neurotransmission and synthesis
capacity (11,12). Increased baseline dopaminergic activity in
SZ has been proposed to introduce computational noise in the
reinforcement-learning system, blunting RPE signaling and
resulting in poor reward learning (13,14). This hypothesis is
bolstered by evidence that pharmacological manipulations
increasing dopamine tone in control (CN) participants yield
blunted VS RPE signals (15). SZ has also been associated with
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chaotic dopamine firing along with elevations in baseline
dopaminergic activity (13). These abnormal firing patterns are
thought to simulate inappropriate RPE signaling to otherwise
nonsalient, neutral stimuli and may underlie the formation of
delusions (13,16). The idea that abnormal VS RPE signaling
might cause events to be perceived as unduly salient is an
intriguing hypothesis, linking phenomenological and biological
domains of understanding in SZ.

Several studies have examined RPE signaling in SZ (17).
These studies have yielded mixed findings, with some reports
demonstrating decreased VS RPE signaling for SZ patients
compared with CN participants (18–20), and others not
(21–25). There are several reasons why these reports may be
mixed. First, there may be heterogeneity in the phase of illness
studied: Some reports recruited first-episode unmedicated
patients (19,20) and others chronic medicated patients
(21–25), with some evidence suggesting that blunted VS
RPE signaling may be more pronounced in unmedicated
patients (20,26). This literature is also hampered by small
sample sizes, with most studies recruiting fewer than 20
subjects per group (18,21–24,26). These small samples are
problematic because positive findings with small samples
represent estimates of effect sizes with high uncertainty (27).
Another issue is heterogeneity in methods used to quantify VS
RPE signaling. Some reports have examined VS RPE signaling
by performing blood oxygen level–dependent (BOLD) con-
trasts between task conditions (18,22–25), for example, con-
trasting trials where reward was expected from trials where
reward was unexpected. However, such approaches may lack
sensitivity, as RPE magnitudes are not calculated on a trial-by-
trial basis. In contrast, others have fit participant choice behavior
to a reinforcement-learning algorithm to generate trialwise
prediction error (PE) estimates (19–21). Finally, for those studies
that implemented reinforcement-learning algorithms, few studies
have performed tests to ensure that these models fit choice
behavior significantly better than chance (19,21,22). This con-
sideration is important, as parameter estimates from poor-fitting
individuals are difficult to interpret and may be misinterpreted as
aberrant RPE signaling. In summary, evidence is mixed for VS
RPE signaling as a mechanism for reward-learning dysfunction
in SZ, particularly for chronic medicated patients.

In the current study, we utilized computational approaches
to examine VS RPE signaling in two independent samples of
chronic medicated outpatients with SZ and CN participants,
testing the assertion that aberrant VS RPE signals underlie
reward-learning dysfunction. We used a probabilistic reversal
learning (PRL) task that has been well validated in the basic
and clinical science literatures (20,28–30). To examine trialwise
PE we fit each participant’s choice behavior to a Q-learning
model, and entered trialwise PE values as regressors in our
imaging analyses to index VS reactivity (20).

METHODS AND MATERIALS

Participants

Participants were recruited from two independent study sites:
Washington University in St. Louis (WUSTL) (SZ patients 5 58,
CN participants 5 40) and the Maryland Psychiatric Research
Center at the University of Maryland School of Medicine

(SZ patients 5 35; CN participants 5 23). Data from each of
these samples using conventional fMRI analyses were pre-
sented in Culbreth et al. (28) and Waltz et al. (30), respectively.
Each site received approval from their respective institutional
review boards, and all subjects provided informed consent. In
the Maryland sample, 6 SZ patients and 2 CN participants
were excluded due to poor task performance; however, no
participants were excluded due to excessive movement (see
the Supplement). In the WUSTL sample, 1 SZ patient and 4
CN participants were excluded due to excessive movement
during scanning (movement based on root mean square was
greater than 0.2 across the run), yielding final sample sizes of
93 and 50 across sites.

Clinical Assessments

Diagnoses were determined using the Structured Clinical
Interview for DSM-IV-TR (31). Negative symptoms were
assessed using the Scale for the Assessment of Negative
Symptoms (SANS) (32). Positive and disorganized symptoms
were assessed using the Scale for the Assessment of Positive
Symptoms (33) at WUSTL, and the Brief Psychiatric Rating Scale
(34) at Maryland. All participants passed a drug screen. General
intellectual functioning was assessed at both sites using the
Wechsler Test of Adult Reading (35).

Probabilistic Reversal Learning Task

Similar PRL tasks were presented at the two sites, both in
conjunction with fMRI scanning (see the Supplement). On
each trial of the task, two abstract visual patterns are shown to
participants, one commonly (80%) and one rarely (20%)
rewarded. Participants are not told these precise percentages.
Subjects are instructed to guess which pattern is most likely to
yield reward. They are instructed that occasionally the reward
contingencies reverse and the alternative stimulus is associ-
ated with a high probability of reward. The chosen response is
highlighted upon response and participants are given feed-
back (correct or incorrect) on each trial. Each run consists of
an initial acquisition where participants learn values for each
choice. After the reward contingencies are learned—that is,
participants met a performance threshold of selecting the
correct response eight of 10 previous trials in the WUSTL and
nine of 10 in the Maryland sample—contingencies reversed.
Probabilistic negative feedback is implemented such that a
correct response for each trial receives negative feedback 20%
of the time. All subjects practiced the task prior to scanning.
Participants won bonus money for increased task accuracy.

Behavioral Data Analysis

Independent-samples t tests were conducted to determine
group differences in the number of errors committed and the
number of reversals achieved. The initial acquisition phase of
each run was also analyzed to determine the number of trials
participants needed to learn the reward contingencies.

Computational Modeling of Behavior

We fit a standard Q-learning model to individual choice
behavior. For each trial (t), this model estimates the value (Q)
of each action (i). The action value of the chosen action is
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