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a  b  s  t  r  a  c  t

Crash  data  are collected  through  police  reports  and  integrated  with  road  inventory  data  for  further  anal-
ysis. Integrated  police  reports  and  inventory  data  yield  correlated  multivariate  data  for  roadway  entities
(e.g., segments  or intersections).  Analysis  of such  data  reveals  important  relationships  that  can  help  focus
on high-risk  situations  and  coming  up with  safety  countermeasures.  To  understand  relationships  between
crash  frequencies  and  associated  variables,  while  taking  full advantage  of  the  available  data,  multivari-
ate  random-parameters  models  are  appropriate  since  they  can  simultaneously  consider  the  correlation
among  the  specific  crash  types  and account  for unobserved  heterogeneity.  However,  a  key issue that
arises  with  correlated  multivariate  data  is  the  number  of crash-free  samples  increases,  as  crash  counts
have  many  categories.  In this  paper,  we  describe  a multivariate  random-parameters  zero-inflated  neg-
ative binomial  (MRZINB)  regression  model  for jointly  modeling  crash  counts.  The  full  Bayesian  method
is  employed  to  estimate  the  model  parameters.  Crash  frequencies  at  urban  signalized  intersections  in
Tennessee  are  analyzed.  The  paper  investigates  the  performance  of  MZINB  and  MRZINB  regression  mod-
els  in  establishing  the  relationship  between  crash  frequencies,  pavement  conditions,  traffic  factors,  and
geometric  design  features  of  roadway  intersections.  Compared  to the MZINB  model,  the  MRZINB  model
identifies  additional  statistically  significant  factors  and provides  better  goodness  of  fit  in developing  the
relationships.  The  empirical  results  show  that  MRZINB  model  possesses  most  of the  desirable  statisti-
cal  properties  in  terms  of its ability  to  accommodate  unobserved  heterogeneity  and  excess  zero  counts
in  correlated  data.  Notably,  in the  random-parameters  MZINB  model,  the estimated  parameters  vary
significantly  across  intersections  for  different  crash  types.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Traffic crashes at urban intersections place a huge burden
on society through death, injury, lost productivity, and prop-
erty damage. Crash frequency at roadway intersections has been
increasingly studied in recent years. Several studies (see, for exam-
ple, Miaou, 1994; Lord et al., 2005; Caliendo et al., 2007; Ye et al.,
2009; Anastasopoulos and Mannering, 2009; for a complete review
of this literature see Lord and Mannering, 2010) have examined
the number of crashes occurring at an intersection as a function
of intersection geometric features and traffic factors. The study of
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crash frequencies has long matured in the field of univariate count
models, and many variants of the approaches mentioned above
are already used extensively for univariate count data. However,
creating general specifications of the univariate count model is a
problem for modeling specific types of crash counts (for example,
the number of crashes resulting in fatalities, injuries, etc.). In fact,
crash frequency data are multivariate in nature and correlated. Uni-
variate count model has not been the case for correlated crash count
data, especially for general dependency structures with more than
two correlated crash counts.

In such context, one may  consider a simple Poisson, nega-
tive binomial (NB), or Poisson-lognormal discrete distribution, and
develop multivariate versions of these discrete distributions to
accommodate correlated counts (Ma  and Kockelman, 2006; Park
and Lord, 2007; Ma  et al., 2008; EI-Basyouny and Sayed, 2009a).
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These multivariate models are useful in crash-frequency modeling,
since they explicitly consider the correlation among the specific
crash types of crash counts for each roadway entity (Miaou and
Song, 2005; Bijleveld, 2005; Song et al., 2006). However, those
multivariate models do have their limitations, most notably their
inability to handle excess zero counts, which is a phenomenon
when crash counts have many categories because some roadway
entities have no crashes reported during the analysis period. They
also lack the desirable ability to account for unobserved hetero-
geneity across roadway entities.

Two recent papers have described analytical method develop-
ment. Anastasopoulos et al. (2012a) estimated a multivariate tobit
model that addresses the possibility of differential censoring across
injury-severity levels. Castro et al. (2012) proposed an equivalent
latent variable-based generalized ordered response framework for
count data models. Their formulations allow handling excess zeros
in correlation count data. Comparing those studies, one could con-
clude that the multivariate model—with its properties of handling
extra zeros and accounting for unobserved heterogeneity—has the
potential to provide a fuller understanding of the factors affecting
crash frequencies.

In contrast to those two existing studies, which address the
two challenges discussed above for correlated crash counts, our
approach relies on zero-inflated NB (ZINB) model with random
parameters. The ZINB model has proved useful for modeling out-
comes with numerous zeros. It operates on the principle that
the excess zero density that cannot be accommodated by a con-
ventional count structure is accounted by a splitting regime that
models a crash-free versus a crash-prone propensity of a roadway
entity. The probability of a roadway entity being in zero or non-zero
states can be determined by a binary logit or probit model (Lambert,
1992; Lee and Mannering, 2002; Kumara and Chin, 2003). The mul-
tivariate ZINB (MZINB) model is potentially an alternate for jointly
modeling correlated crash frequency data with excess zeros. How-
ever, this model’s ability to account for unobserved heterogeneity
is limited because it assumes that the parameter estimates are fixed
over roadway-entity observations.

Many crash count model application studies assume that
parameters are completely fixed, and do not consider unob-
served heterogeneity across roadway entities by incorporating
random-parameters. However, in the presence of unobserved het-
erogeneity, such a fixed-parameter approach could result in biased
parameter estimations and incorrect inferences (Washington et al.,
2011). On the other hand, some researchers use random-effects
models (Milton et al., 2008; Shankar et al., 1998; Miaou et al.,
2003; Guo et al., 2010; Christoforoua et al., 2010, 2011) to consider
unobserved heterogeneity, but in a rather coarse and restric-
tive form where the common unobserved effects are assumed
to be distributed over the spatial/temporal units according to
some distribution, and shared unobserved effects are assumed to
be uncorrelated with explanatory variables. To account for the
potential unobserved heterogeneity issues associated with crash-
frequency data, recent research (Anastasopoulos and Mannering,
2009; EI-Basyouny and Sayed, 2009b; Anastasopoulos et al.,
2012b) advocates the use of count models with random param-
eters as an alternate approach. Random-parameters models can
be viewed as an extension of random-effects models. How-
ever, rather than effectively influencing only the intercept of the
model, random-parameters models allow each estimated param-
eter of the model to vary across individual observation in the
dataset. These models attempt to account for the unobserved
heterogeneity from one intersection to another. Compared to
the conventional crash prediction model, which fits one regres-
sion model to the dataset, the random-parameters approach
develops different regression models for individual sites. The
possibility of accounting for heterogeneity by allowing some or

all parameters to vary across roadway entities has considerable
potential.

In this paper, we  develop a multivariate random-parameters
ZINB (MRZINB) regression model to account for unobserved hetero-
geneity, which the conventional multivariate zero-inflated models
cannot address. Since our formulation is based on the MZINB
method, it also has the property of accommodating excess zeros
in correlated count data. The results of a review of the work per-
formed on the application of zero-inflated model in traffic safety
show that the zero-inflated models outperform other models when
the zero counts are over 65% in the data. Our data show that the
proportion of crash-free sample in Tennessee is 40.50%, 82.85%,
and 95.12% for car-only, car–truck, and truck-only crashes, respec-
tively. As seen from the data, although the zero counts are not
totally over 65%, they cannot be handled by a normal Poisson or
Poisson-gamma process either. Because of this, a MRZINB model
needs to be developed for analysis of crash counts across vehi-
cle type. The full Bayesian method is employed to estimate the
model parameters. We  apply the modeling framework to estimate
crash frequencies at urban signalized intersections in Tennessee.
For model performance evaluation, the MZINB and multivariate
NB (MVNB) models are employed as the comparison models. Two
aspects of model performances, including significant factors iden-
tifying ability and model goodness of fit have been examined. In
addition, the paper investigates the performances of MRZINB and
MZINB regression models in establishing the relationship between
crashes, pavement conditions, traffic factors, and geometric design
of roadway intersections. The primary objective of the model appli-
cation is to investigate which factors contribute significantly to the
crash counts across vehicle types. The secondary objective is to
examine if there is any difference in the specific types of crashes for
the same factor and how to control the factor to reduce higher crash
frequencies for a certain crash type while other types of crashes are
not an issue.

2. Model structure and estimation

The following section presents the general forms of MRZINB
regression models and provides brief descriptions of its estimation
procedures. In the regression setting, the objectives are to iden-
tify significant factors influencing the zero-inflation incidence and
to determine the extent of the effects of geometric design fea-
tures, pavement characteristics, and traffic factors on the mean
events.

2.1. MZINB distributions

We use a mixture of distributions to construct a MZINB model
(Li et al., 1999). These distributions include:

(a) a point mass at 0 (crash-free), the probability mass function
(pmf) is

P(Y1 = 0, . . .,  Ym = 0) = p0 + p1 exp(−�1) + p2 exp(−�2)

+ · · · + pm exp(−�m) + p11 exp(−�) (1)

where Yi is the number of crashes for crash type i. Note that Y1,
Y2, . . .,  and Ym can be represented by

Y1 = U1 + U0, Y2 = U2 + U0, . . .,  Ym = Um + U0 (2)

where p0 + p1 + p2 + · · · + pm + p11 = 1 and �10, �20, . . .,  �m0, and
�00 are the means of U1, U2, . . .,  Um, and U0, respectively. Eq. (2)
contains 2(m + 1) parameters, which increase linearly with m.
With the further assumption that �1 = �10 + �00, �2 = �20 + �00,
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