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a  b  s  t  r  a  c  t

Hot  spot  identification  (HSID)  aims  to identify  potential  sites—roadway  segments,  intersections,  cross-
walks,  interchanges,  ramps,  etc.—with  disproportionately  high  crash  risk  relative  to similar  sites.  An
inefficient  HSID  methodology  might  result  in either  identifying  a safe  site  as  high  risk  (false  positive)  or
a  high  risk  site  as safe  (false  negative),  and  consequently  lead  to the misuse  the  available  public  funds,
to  poor  investment  decisions,  and  to  inefficient  risk  management  practice.  Current  HSID  methods  suffer
from issues  like  underreporting  of  minor  injury  and  property  damage  only  (PDO)  crashes,  challenges  of
accounting  for  crash  severity  into  the  methodology,  and  selection  of a  proper  safety  performance  func-
tion  to  model  crash  data  that  is often  heavily  skewed  by  a preponderance  of  zeros.  Addressing  these
challenges,  this  paper  proposes  a combination  of  a PDO  equivalency  calculation  and  quantile  regression
technique  to  identify  hot spots  in a transportation  network.  In particular,  issues  related  to  underreport-
ing  and  crash  severity  are  tackled  by incorporating  equivalent  PDO  crashes,  whilst  the  concerns  related
to  the  non-count  nature  of equivalent  PDO  crashes  and  the  skewness  of crash  data  are  addressed  by
the  non-parametric  quantile  regression  technique.  The  proposed  method  identifies  covariate  effects  on
various  quantiles  of a  population,  rather  than  the  population  mean  like  most  methods  in practice,  which
more  closely  corresponds  with  how  black  spots  are  identified  in practice.  The  proposed  methodology  is
illustrated  using  rural  road  segment  data  from  Korea  and  compared  against  the  traditional  EB method
with  negative  binomial  regression.  Application  of a  quantile  regression  model  on  equivalent  PDO  crashes
enables  identification  of  a  set  of  high-risk  sites that  reflect  the  true  safety  costs  to  the  society,  simul-
taneously  reduces  the  influence  of under-reported  PDO  and  minor  injury  crashes,  and  overcomes  the
limitation  of  traditional  NB  model  in  dealing  with  preponderance  of  zeros  problem  or  right  skewed
dataset.

©  2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Once operational, the transportation system (consisting of road
segments, intersections, ramps, interchanges, etc.) does not per-
form homogenously with respect to safety due to both random
and systematic influences. Not surprisingly, heterogeneity in the
driving population, roadside features, weather, traffic conditions,
driver behavior, and design features leads to heterogeneity in
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crash frequencies. Because of a desire and mandates to provide a
safe driving environment, professionals are charged with identify-
ing and improving “high risk” locations. Once potential high risk
sites are identified—say the top 10% of all urban intersections in a
city—safety engineers conduct safety audits of the sites to identify
and rectify operational or geometric deficiencies.

There is a fairly extensive literature focused on methods for
the identification of “black spots”, “high risk sites”, “sites with
promise”, or “hotspots” (HSID). The term “network screening” is
also synonymous with HSID. A variety of methods have been pro-
posed, presented, and applied. Previous research (e.g., Hauer, 1997;
Persaud, 1986, 1988; Persaud and Hauer, 1984) reported that meth-
ods relying on a simple ranking of crash counts or crash rates,
due to the random fluctuation of crashes from year to year, can
produce large number of false positives (safe sites falsely identi-
fied as unsafe) and false negatives (truly hazardous sites escape
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identification). These errors result in inefficient use of federal
and/or state aid and local government resources applied for safety
improvements.

A discussion in the literature regarding the continuous nature of
crash risk across sites and the tradeoffs between false negatives and
positives is also conspicuously short. The most “risky” X% of sites is
typically determined by available resources and mandated safety
management practices. These X% of sites are marginally ‘less safe’
than the sites just below the mostly artificial crash rate or frequency
threshold. The difference between “safe” and “risky” sites is not
deterministic, i.e., the presence or absence of a particular feature.
Thus, the entire process of HSID is a somewhat artificial separation
of “good” and “bad” sites on a continuous crash risk measurement
scale. As a result, tradeoffs between “false positives” and “false neg-
atives” will be impacted by the choice of X, or the percentage of sites
determined to be “risky”. For example, all sites performing worse
than average could be considered to represent unacceptable risk,
resulting in X near 50%. Conversely, only the top 1% of sites could be
considered to have unacceptable risk. These decisions significantly
impact all aspects of HSID and influence the performance results of
the methods.

Hauer and Persaud (1984) drew an analogy between the first
stage of identification of black-spots and a sieve, and discussed how
to measure the performances of various methods of identifying hot-
spot sites. Based on this study, Higle and Hecht (1989) conducted a
simulation experiment to evaluate and compare techniques for the
identification of hazardous locations in terms of crash rates. Subse-
quent work by Hauer (1997) and others (e.g., Bauer and Harwood,
2000; Hadayeghi et al., 2003; Miaou and Lord, 2003) showed that
safety performance functions might be curvilinear with respect to
VMT, and therefore should not in general be used to rate the risk of
various sites.

The Empirical Bayes’ (EB) method, formally introduced by Hauer
(1997), has been adopted as the state of the practice HSID. The
application of EB for HSID has received a great deal of atten-
tion as it accounts for both crash history and expected crashes
on similar sites—two essential clues to safety at a site (Persaud,
1999). It follows that the safety of a site is affected by not only
some common measurable factors shared by a corresponding ref-
erence population (generally captured in the safety performance
function) but also some unique characteristics associated with the
site (reflected in its crash history). In EB method, the safety of a
site is estimated by a weighted average of observed crash count
of the subject site and expected crashes of similar sites, where
the weight is determined by the variance in estimating expected
crashes of the reference sites. Hauer et al. (1988) applied Empirical
Bayes’ (EB) method to estimate the safety at signalized intersec-
tions, Persaud (1991) evaluated crash potential of Ontario road
sections and Higle and Witkowski (1988) presented a Bayesian
technique making use of crash rates. In a carefully controlled Monte
Carlo simulation study comparing crash rate ranking, frequency
ranking, accident reduction potential, and EB methods, Cheng and
Washington (2005) showed that under controlled experimental
conditions the EB method is in general superior to all other methods
available for identifying high risk sites—revealing the lowest per-
centage of false positive and false negative errors. In subsequent
work Cheng and Washington (2008) developed new criteria under
which HSID methods can be evaluated and again the EB method
yielded superior performance.

In a few studies on HSID methods researchers have attempted
to tackle the complex issue of crash severity. For example, the
Missouri Department of Transportation identified seven methods
for identifying high crash locations, two of which acknowledged
the importance of crash severity (MDT, 1999). They detailed a
crash severity method that weighed injury and fatal crashes, dic-
tated by ‘local policy’ that appears to be somewhat arbitrary, by a

factor of (for example) 6 compared to property damage only (PDO)
crashes to obtain an EPDO estimate. The severity-rate method they
identified takes the EPDO estimate and divides by exposure across
locations to obtain an EPDO based rate.

Tarko and Kanodia (2003) recommended the index of crash
frequency and index of crash cost as the ‘best’ methods for conduct-
ing HSID after conducting a thorough review. The index of crash
frequency method in simple terms estimates safety performance
functions by location (rural multi-lane roads, rural interstates,
etc.) and compares the observed to expected total crash frequen-
cies (divided by the standard deviation of the difference estimate)
to rank sites for potential improvement. This method does not
account for severity nor does it account for possible regression to
the mean effects. Their second recommended method is similar
to the first except that it uses crash costs to incorporate sever-
ity. Count models are estimated separately for PDOs and injuries
and fatalities (I/Fs) (Tarko et al., 2000). Then, the average costs for
PDOs and I/Fs (and other ancillary statistics) are used to calculate
a severity-weighted index. This method accounts for severity, but
requires as many regression models as there are severity classes
which becomes cumbersome and requires estimation on increas-
ingly smaller samples sizes. Ma  et al. (2008) proposed even a more
complex multivariate Poisson-lognormal model to consider sever-
ity and frequency in a safety performance function simultaneously.
While this approach is extremely capable of accounting both fre-
quency and severity for HSID, it is cumbersome for practitioners
and safety managers to apply due to its significant complexity and
time commitment to estimate.

A well specified safety performance function is the key to effi-
ciently identify sites with high risks. The preponderances of zeros
in the crash data led researchers to apply zero-inflated count
model by considering the possibility of the existence of dual-state
data-generating process: one state is the “zero state” where the
probability of an event is so low that it cannot be distinguished
from zero and the other state is the “normal-count state” that
includes the zeros and positive integers (e.g., Chin and Quddus,
2003; Shankar et al., 1997). The application of zero-inflated models
for modeling motor vehicle crashes has been proved inappropri-
ate mainly because of theoretical inconsistencies (e.g., Lord et al.,
2007, 2005). To account for over-dispersion and various other types
of heterogeneities in the crash data, researchers have tried differ-
ent modeling options like generalized estimating equation models
(Lord and Persaud, 2000), finite mixture regression model (Park
and Lord, 2009), three-processes count model (Washington and
Haque, 2013), random effects model (Shankar et al., 1998), ran-
dom parameters model (Anastasopoulos and Mannering, 2009),
Bayesian hierarchical models (e.g., Haque et al., 2010; Huang et al.,
2009), artificial neural network model (Chang, 2005), quantile
regression models (e.g., Liu et al., 2013; Qin, 2012; Qin and Reyes,
2011) and many others (see Lord and Mannering, 2010 for details).
Recently, Qin et al. (2010) have applied a non-parametric quantile
regression model to account for heterogeneities and skewed dis-
tribution of crash data, but they did not take into account crash
severity into the methodology of identifying high risk sites.

In summary, challenges remain in HSID methodologies and
include: (1) incorporating crash severity and costs into the hot
spot identification technique, (2) underreporting of minor injury
and property damage only (PDO) crashes, and (3) lack of a reli-
able of safety performance function that can deal with the crash
data heavily skewed by a preponderance of zeros partially caused
by crash underreporting issues. Addressing these challenges, this
paper proposes a combination of PDO equivalency calculation and
quantile regression technique to identify sites with high risks
in a transportation network. The method applies a non-arbitrary
weighting scheme to account for crash costs, is not analytically
cumbersome, and can be applied relatively quickly and efficiently.
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