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Hierarchical structures in road safety data are receiving increasing attention in the literature and mul-
tilevel (ML) models are proposed for appropriately handling the resulting dependences among the
observations. However, so far no empirical synthesis exists of the actual added value of ML modelling
techniques as compared to other modelling approaches. This paper summarizes the statistical and con-
ceptual background and motivations for multilevel analyses in road safety research. It then provides a
review of several ML analyses applied to aggregate and disaggregate (accident) data. In each case, the
relevance of ML modelling techniques is assessed by examining whether ML model formulations (i) allow
improving the fit of the model to the data, (ii) allow identifying and explaining random variation at specific
levels of the hierarchy considered, and (iii) yield different (more correct) conclusions than single-level
model formulations with respect to the significance of the parameter estimates. The evidence reviewed
offers different conclusions depending on whether the analysis concerns aggregate data or disaggregate
data. In the first case, the application of ML analysis techniques appears straightforward and relevant.
The studies based on disaggregate accident data, on the other hand, offer mixed findings: computational
problems can be encountered, and ML applications are not systematically necessary. The general rec-
ommendation concerning disaggregate accident data is to proceed to a preliminary investigation of the
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necessity of ML analyses and of the additional information to be expected from their application.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the data of interest for road safety research happen to
be hierarchically organized, i.e., to belong to structures with several
hierarchically ordered levels. This implies that the observations can
be unambiguously attributed to one and only one unit at higher
level(s).! For a part, these hierarchical structures result from the
spatial (and temporal) spread of the data: Observations belong to
larger geographical areas or units (road sites, segments, or inter-
sections, counties, regions, etc.), or are made on a recurrent basis
over a given time period. For another part, this hierarchical orga-
nization of observations results from the very nature of accidents,
as each road-user, driver, or vehicle observation “pertains” to one
and only one accident.

One of the main problems associated with hierarchical data
organization is the dependence that it generates among the obser-
vations (Hox, 2002). Observations that are sampled from the same
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geographical units have in common a series of unobserved charac-
teristics that are proper to these larger geographical areas (Langford
et al., 1999). One can think of risk studies that are based on crash-
frequency data aggregated over a sample of road intersections or
segments, which may themselves exhibit different road geomet-
rics, traffic, or other unobserved environmental characteristics that
are all likely to affect accident frequency. In a similar vein, observa-
tions that are made at time points that are close from each other will
also tend to be more similar than observations that are made at two
remote time points. One can doubt of the possibility to exhaustively
account for these heterogeneities by measuring and including them
as covariates in a model. One can also doubt that all of these het-
erogeneities will be measurable at all (Huang and Abdel-Aty, 2010).
Similarly, observations made on individuals occupying the same
vehicles and involved in the same accident are likely to resemble
each other more than observations made on individuals involved in
different vehicles or accidents. This is so because these observations
will be commonly influenced by vehicle and accident characteris-
tics that are often left unobserved in a given analysis.

The estimations obtained from most standard analysis tech-
niques rest on the assumption that the observations are sampled
from a single homogeneous population, and that the residuals are
independent. However, the hierarchical organization of data funda-
mentally challenges these assumptions. Hence, applying traditional
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statistical techniques (linear or generalized linear models) to hier-
archically organized data is likely to result in underestimated
standard errors and exaggeratedly narrow confidence intervals
(Kreft and De Leeuw, 1999). The risk is consequently that incorrect
conclusions be derived about the significance of the parameters
whose effects are investigated.

Statistical models have been developed that allow account-
ing for hierarchical data structures, and taking into account the
dependence they introduce among the data. Because the hierarchi-
cal structure is specified in the model, predictors that characterize
the different levels considered can also be correctly defined (no
need for aggregation or disaggregation). These models are labelled
multilevel models, hierarchical models, mixed-effect models, ran-
dom coefficients or random parameter models. In the remainder of
this article the terms multilevel (ML) or hierarchical (HL) models
will be used indifferently.

Although there are good statistical and conceptual arguments
for the application of ML models in road safety research, so far no
review based on road safety analyses has been conducted to assess
the actual added value they can offer compared to “traditional”
modelling techniques in this field of research. This article starts
with a description of the hierarchical structures most commonly
encountered in road safety studies. HL models are then defined and
their statistical and conceptual interest is discussed. The second
part of this article provides a review of several ML analyses con-
ducted on the basis of three types of road safety data: (1) aggregated
accident data, (2) disaggregated accident data, and (3) behavioural
indicators. In each case, the review focuses on the questions of
knowing whether ML model formulations (i) allow identifying sig-
nificant random variation of the observations at the various levels of
the hierarchy considered, (ii) allow improving the fit of the model
to the data, and (iii) yield different conclusions than single-level
model formulations with respect to the significance of the esti-
mates of the effects of explanatory variables. The necessity and
feasibility of applying ML models is finally discussed distinguishing
the three types of data.

2. Prevailing hierarchies in road safety research: spatial
distributions of data and the nature of the accident process

One can distinguish two prevailing hierarchies in road safety
data, namely: geographical and accident hierarchies.

As illustrated in Fig. 1, road safety data are organized in
geographical units that are nested into each other (for exam-
ple: road-sites nested into counties that are themselves nested
into regions and countries). Similarly, the observations made
on individual road users involved in accidents are nested
into vehicles, which are themselves nested into different acci-
dents.

The two hierarchies are actually complementary and have been
incorporated into a single framework to represent prevailing data
structures in road safety (Huang and Abdel-Aty, 2010). An adapted
version of this general hierarchical framework is presented in
Fig. 2.

Because road sites can be considered to belong to both types
of hierarchies, they constitute the link between geographical
and accident hierarchies, the macro- and microscopic ML struc-
tures.

Repeated measurements in particular can be included as a hor-
izontal ‘time’ dimension in this framework (Huang and Abdel-Aty,
2010; Aguero-Valverde and Jovanis, 2006). The multilevel struc-
ture can also be a multiple membership structure, as indicated by
the double arrow inside the pyramid, or a cross-classification struc-
ture, as indicated by the crossed arrows inside the pyramid. These
complex structures are detailed in Section 5.1.

Depending on the research question, driver characteristics can
be associated to the “vehicle” (e.g., all information about driver
behaviour or manoeuvres)or to the “road users” level (e.g., the char-
acteristics that are likely to affect the severity of accident outcomes
such as age or gender).

The “measurements/responses” level has been included in Fig. 2
to specify the capacity of multilevel models to handle complex
types of response variables as being nested within individuals
(i.e., multivariate responses, e.g. Duncan et al. (1999) multinomial
responses, or repeated measurements).

Intuitively, geographical hierarchies call for macroscopic anal-
ysis, while accident hierarchies, with individual road users or
drivers as unit of analysis are the ideal basis for microscopic anal-
ysis (e.g., “What are the accident, vehicle, or driver characteristics
that help predicting the occurrence of accidents and/or their out-
comes?”).

3. “Hierarchical/multilevel models” - definition and
general model formulation

ML/HL models are regressions (linear or generalized linear
models) in which the parameters (intercept and/or estimates of
covariates effects) are assigned a probability model. As a conse-
quence, this “higher-level (probability) model has parameters of
its own (mean, variance). These are termed the “hyperparameters”
of the model-which are also estimated from the data” (Huang and
Abdel-Aty, 2010: p. 1560).

In this sense, hierarchical models are grounded in the Bayesian
paradigm: The model parameters are assigned a probability distri-
bution that summarizes the knowledge the researcher has about
each parameter, prior to any data observation. These “prior distri-
butions” may be either informative (when, for example, existing
knowledge allows reasonable assumptions to be made about the
mean value of the parameter and its variance), or vague. In the
latter case, “typical” distributions with relatively large variances
are assigned to the parameters, so as to account for the lack of
knowledge prior to observation. In the Bayesian approach, infer-
ence about the parameters is based on the posterior distribution,
which combines the prior information (defined by the prior distri-
bution) with information derived from the observations. Carriquiry
and Pavlovich (2004), as well as Miaou and Lord (2003) pro-
vide a thorough discussion of hierarchical model formulation in
relation to the distinction between Empirical and Full Bayes esti-
mation.

Following Lord and Mannering (2010), it is important to
distinguish between models allowing random variation of the
parameters and “truly” hierarchical models. In the first case, the
intercept and covariate parameters are allowed to vary across the
observations, and are thus assigned a probability distribution. HL
models, on the other hand, specify the observations units (the
lowest level of observation, for example, crash counts aggregated
at various road intersections) as being clustered into higher-level
units (for example, the “corridors” to which the various road seg-
ments belong to). In the latter case, the higher-level units are
themselves considered a sample from a larger population (a sample
from the “corridor population”). In such cases, the hyperparam-
eters of the model define the random variation of the model’s
parameters across the units at the higher level(s) (the corridors).
The total variation in the observations can consequently be par-
titioned, or structured, along the different levels included in the
model.

As we will see, although the first type of model takes account
of the unobserved extra variations, it does not account for the
hierarchical structure in itself, and does not offer any informa-
tion about the proportion of variation in the observation that is



Download English Version:

https://daneshyari.com/en/article/572443

Download Persian Version:

https://daneshyari.com/article/572443

Daneshyari.com


https://daneshyari.com/en/article/572443
https://daneshyari.com/article/572443
https://daneshyari.com

