

Journal of Cystic Fibrosis 16 (2017) 250-257

Original Article

A cross-sectional analysis of daytime versus nocturnal polysomnographic respiratory parameters in cystic fibrosis during early adolescence $\frac{1}{24}$

K.A. Waters*, A. Lowe, P. Cooper, S. Vella, Hiran Selvadurai

Respiratory Medicine, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia.

Received 12 May 2016; revised 21 September 2016; accepted 23 September 2016

Available online 8 October 2016

Abstract

Background: In Cystic Fibrosis (CF), early detection and treatment of respiratory disease is considered the standard for respiratory care. Overnight polysomnography (PSG) may help identify respiratory deterioration in young patients with CF.

Methods: A prospective cohort study of 46 patients with CF, aged 8–12 years, from a specialist clinic in a tertiary paediatric hospital. Daytime pulmonary function, shuttle test exercise testing and overnight PSG were studied.

Results: Of 81 children aged 8–12 years, 46 (57%) agreed to participate. FEV₁ (% predicted, mean 74.6%) was normal in 23 (50%), mildly abnormal in 12 (26.1%), moderately abnormal in 10 (21.7%) and severely abnormal in 1 (2.2%). Amongst sleep study parameters, FEV₁ (% predicted) showed significant correlation with the respiratory rate (RR) in slow wave sleep (SWS), CO₂ change in REM, baseline SaO₂, and the arousal index (h^{-1}). Backward, stepwise linear regression modelling for FEV₁ (% predicted) included the entire group with a wide spectrum of clinical severity. From sleep, variables remaining in the multivariate model for FEV₁ (F = 16.81, p < 0.001) were the RR in SWS (min⁻¹) and the CO₂ change in REM (p = 0.003, and 0.014, respectively). When daytime tests were included, the variables remaining were RR in SWS and SD score for BMI (BMIsds) (F = 18.70, p < 0.001).

Conclusions: Respiratory abnormalities on overnight sleep studies included elevated respiratory rates during SWS and mild CO_2 retention in REM sleep, and these incorporated into a model correlating with FEV_1 (% predicted). Thus, mild mechanical impairment of ventilation is evident on overnight sleep studies in children with cystic fibrosis although the significance of this finding will require further investigation. © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

Keywords: Child; Adolescent; Sleep study; Exercise test; Pulmonary

1. Introduction

An array of daytime (awake) evaluations is established in Cystic Fibrosis, many of which are now incorporated into regular (particularly annual) clinical reviews. The annual review includes review of physical growth, pulmonary function testing, chest X-ray, sputum culture, blood count and liver function tests. These tests aim to detect complications of disease early so that treatment can be optimised to ensure the best prognosis for children attending the clinic. Amongst these, FEV_1 is the most common measure linked with risk factors and outcomes [1,2].

Respiratory complications of CF are the leading cause of mortality. While FEV_1 correlates with future outcomes in prognostic studies, other factors such as bacterial colonisation, the occurrence of pulmonary exacerbations and other manifestations of the disease also affect outcomes [3]. Thus, it is important to look at additional markers that may indicate changes in respiratory function not detected by usual pulmonary function testing, or that may provide more sensitive markers of disease progression [3–5].

 $[\]stackrel{\wedge}{\sim}$ Conflicts of interest: None.

^{*} Corresponding author at: Respiratory Medicine, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia.

E-mail address: karen.waters@sydney.edu.au (K.A. Waters).

^{1569-1993/© 2016} European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

Sleep is associated with reduced ventilation compared to wakefulness and these changes can exacerbate respiratory problems in patients with pulmonary or neuromuscular disease [6]. Contributors to the ventilatory abnormalities in sleep include reduced alveolar ventilation, lower airway tone, reduced airway calibre, and reduced sensitivity of the chemoreceptors to hypoxia and hypercapnia, which make the subject vulnerable to hypoxemia [7]. Pulmonary changes include increased ventilation/ perfusion mismatch and a fall in functional residual capacity (FRC), changes that when coupled with the increased airflow resistance can lead to the pulmonary load exceeding the patient's capacity to increase ventilation, particularly during REM sleep [8].

Previous studies during sleep, in both children and young adults with CF, have identified overnight abnormalities including hypoxia in symptomatic children and those with reduced lung function [9–11], reduced sleep quality and sleep disruption measured both subjectively (questionnaires) and objectively (actigraphy) [12,13], sleep disordered breathing including snoring and OSA [14,15], and (particularly in adults), nocturnal respiratory failure [16,17]. These studies are summarised in Table 1.

The primary aim of this study was to determine whether overnight sleep studies could help detect early progression of lung disease in a cohort of pre-adolescent children with CF. In this study, we also examined associations between physiological parameters during polysomnography (PSG) and daytime markers of disease including nutrition, pulmonary function, and exercise testing. We hypothesised that sleep-associated PSG findings would show correlations with daytime measures, particularly with daytime respiratory function testing.

We targeted the age cohort of 8-12 year-olds from within our larger clinic population who were generally pre-pubertal but old enough to participate with an array of daytime tests.

2. Methods

This was a prospective, cross-sectional study of a cohort of children with CF who attended the CF clinic at the Children's Hospital at Westmead (CHW), Sydney Australia, which is a tertiary paediatric hospital. The primary method for diagnosing CF was neonatal screening, and for the majority the diagnosis was confirmed by sweat chloride testing.

The study comprised the Cystic Fibrosis Questionnaire (CFQ) and exercise testing using a shuttle test [18], followed by overnight PSG. Children who were aged between 8 and 12 years at the time the study commenced were eligible for inclusion and were invited to participate. There were no exclusion criteria.

Ethical approval was obtained from the Human Research Ethics Committee of the Sydney Children's Hospital Network. Informed consent was obtained from all participating children and/or their parents prior to participation in the study. Consent

Table 1

PSG studies in patients with CF.		
Author, year	Patient group	Findings
Paranjape et al., 2015 [38]	13 CF 17 Cn	No sleep differences
	9.6 years.	No \uparrow in obstructive events
	FEV ₁ (CF only) 87% predicted (36–115%)	No difference in CO ₂
		\downarrow SaO ₂ REM, NREM and nadir
		↑ respiratory rates NREM
		↑ flow limitation
Ramos et al. 2013 [9]	Age 2–14 years	6 (6%) had nocturnal hypoxemia: SpO ₂ <90% for >5% of TST & nadir \leq 85%
	67 of 85 eligible	Also had \uparrow REM, \uparrow AHI (NS),
	Clinically stable	Correlates: FEV ₁ , FVC, Microarousal index, AHI
Fauroux et al., 2012 [12]	PSG in 11 adults 24 years,	Mean FEV ₁ 44% predicted
	Actigraphy + overnight SpO ₂ and PtcCO ₂ in	18% had >10% night SaO ₂ < 90%
	55 adults (24 years), 25 children (13 years)	$24\% \text{ TCO}_2 > 50 \text{ mmHg}$
		\uparrow sleep latency, \downarrow sleep efficiency, \uparrow night activity and \uparrow sleep fragmentation
		Correlation: night SaO_2 with day FEV_1
Spicuzza et al., 2012 [15]	40 children CF (6 months-11 years), 18 Cn	\downarrow TST, \downarrow sleep efficiency, \downarrow % REM sleep, \uparrow arousal frequency, \downarrow mean SaO ₂ ,
	FEV ₁ 78% predicted in CF	↑ obstructive respiratory events,
		No correlation with FEV_1
Ramos et al., 2009 [14]	Questionnaire screening SDB	Frequent sleep complaints
	PSG in 63 subjects	35 (55.6%) had AHI > 1
	Mean 7.6 years	Correlate: chronic rhinosinusitis
Jankelowitz et al., 2005	Actigraphy: 20 CF, 20 Cn	\uparrow PSQI scores, \downarrow Quality of life
	25.9 years	↑ sleep fragmentation
	FEV ₁ , 65% predicted	Correlate: FEV ₁
Villa et al. 2001 [11]	19 infants, mean 13.1mo & 20 controls	7 with respiratory symptoms
	Equivalent sleep architecture,	\downarrow mean SaO ₂ , SaO ₂ REM < NREM,
		↑ % sleep with SaO ₂ < 93%, \downarrow SaO ₂ nadir
		Correlates of lower SaO ₂ : RR, expiratory time constant
Milross et al., 2001 [16]	32 adults, 27 years,	Evening PaO ₂ morning PaCO ₂
	FEV ₁ 36% predicted	Correlates: Average min SaO ₂ , \uparrow CO ₂ from NREM to REM,
		Muscle strength and RDI in RFM

CF = cystic fibrosis, Cn = control, TST = total sleep time, REM = rapid eye movement sleep, NREM = non-REM sleep, AHI = apnea hypopnea index, RR = respiratory rate, TCO_2 = transcutaneous CO_2 (mmHg), PSQI = Pittsburgh sleep Quality Index.

Download English Version:

https://daneshyari.com/en/article/5724635

Download Persian Version:

https://daneshyari.com/article/5724635

Daneshyari.com