Multiparametric Imaging Analysis Magnetic Resonance Spectroscopy

O. Rapalino, MD^a, E.M. Ratai, PhD^{a,b,*}

KEYWORDS

- Magnetic resonance spectroscopy N-acetyl aspartate Choline Glioma Cerebral metastasis
- Lactate 2-Hydroxyglutarate Brain tumor

KEY POINTS

- Magnetic resonance spectroscopy (MRS) is a noninvasive technique that allows the study of metabolic processes and chemical environment in the brain parenchyma.
- MRS is one of the few diagnostic techniques that can be used for evaluation of low-grade neoplastic processes and for their differentiation from non-neoplastic entities.
- Despite many technical and reimbursement challenges to its use in routine clinical practice, MRS will continue to develop as an important and sensitive imaging tool for assessment of intracranial pathologies.

DISCUSSION OF PROBLEM/CLINICAL PRESENTATION

MRS allows the gualitative and guantitative assessment of specific metabolites in the brain parenchyma or intracranial extra-axial spaces. MRS analysis of brain tumors can be performed using ¹H (proton) MRS or, less frequently, with ³¹P (phosphorus) or ¹³C (carbon) MRS techniques. For ¹H MRS, the most common metabolites evaluated in routine clinical practice include N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine (Cr), myo-inositol (ml), lipid (Lip), and lactate (Lac) (Table 1). NAA is considered a neuronal metabolite and is decreased in processes with neuronal destruction or dysfunction.¹ Cr is a metabolite related to the cellular energy metabolism and is considered relatively stable in different pathologic processes affecting the central nervous system and useful as a reference metabolite. Cho are related to membrane turnover and their elevation is indicative of a process that results in increased glial proliferation and membrane synthesis (as seen with cellular proliferative disorders).^{2,3} Lip peaks are often indicative of areas of necrosis and Lac peaks are directly originated from processes resulting in anaerobic metabolism. ml can be a marker of astrocytic metabolism and can be seen elevated in certain pathologic processes (see **Table 1**).

Common diagnostic problems encountered in routine clinical brain tumor imaging can be summarized as follows.

Is It Neoplastic or Not?

Non-neoplastic processes, including malformations of cortical development (such as focal

E-mail address: eratai@mgh.harvard.edu

Magn Reson Imaging Clin N Am (2016) -http://dx.doi.org/10.1016/j.mric.2016.06.001 1064-9689/16/© 2016 Elsevier Inc. All rights reserved.

Disclosures: The authors have nothing to disclose.

^a Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;

^b MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Room 2301, Charlestown, MA 02129, USA

^{*} Corresponding author. Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and A. A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Room 2301, Charlestown, MA 02129.

ARTICLE IN PRESS

Rapalino & Ratai

	Peak	Resonance	Best Echo Time	
Metabolite	Configuration	(ppm)	for Detection	Clinical Associations
NAA	Singlet	2.0	Short or long TE	Neuronal marker (not seen in non-neural brain tumors)
Cho	Singlet	3.22	Short or long TE	Membrane turnover marker and cellular proliferation
Cr	Singlets	3.03 and 3.9	Short or long TE	Cellular energy byproduct. Lower ir necrosis ⁶³
ml	Multiplets	3.56	Short TE	Low-grade gliomas, gliomatosis ⁴
Lip	Broad peaks	0.9, 1.3	Short TE	Tuberculomas, PCNSL, radiation necrosis
Lac	Doublet	1.33	1.5T = inverted at 135–144 ms 3T = 288 ms	Anaerobic metabolism marker Prominent it necrosis or hypoxia
Glx	Multiplets	2.1–2.4 ppm; 3.7 ppm	Short TE	Detected in GBM, astrocytomas and oligodendrogliomas
Taurine	Triplets	3.4	Short TE	Medulloblastomas
Alanine	Doublet	1.47	1.5 T = 144 ms	Meningiomas
Citrate ^{30,64}	Multiplets	2.6	3T = 35 ms and inverts at 97 ms	Gliomas, particularly aggressive pediatric types
Gly ^{65–67}	Singlet	3.55	$3T = 160 \text{ ms}^{67}$	Low-grade gliomas, central neurocytomas
2HG ^{31,68}	Multiplets	1.85, 2.01, 2.28, and 4.05	Best seen with spectral editing techniques 3T = 97 ms ⁶⁸	IDH mutations

Adapted from Chronaiou I, Stensjoen AL, Sjobakk TE, et al. Impacts of MR spectroscopic imaging on glioma patient management. Acta Oncol 2014;53(5):583.

cortical dysplasia) (Fig. 1), hamartomas, cerebral infarcts, infectious pathologies, inflammatory diseases (including demyelinating and vasculitic processes), and vascular pathologies (including capillary telangiectasias and cavernous malformations), can be difficult to differentiate from intra-axial or extra-axial intracranial neoplastic processes in conventional magnetic resonance (MR) studies (Table 2). MRS is a useful imaging tool to help in the differentiation and characterization of these pathologies. Neoplastic processes have metabolic byproducts related to their mitotic activity (Cho) and neuronal dysfunction (NAA) that can be detected by MRS and improve the accuracy of the clinical diagnosis (Fig. 2). The closer the MR spectrum is to a normal spectrum the more likely that the intracranial lesion is a benign process or developmental anomaly (see Fig. 1).

There is significant overlap in the Cho/NAA ratios, however, between non-neoplastic processes, such as tumefactive demyelinating lesions, infarcts, and infectious processes with neoplastic pathologies. Specific metabolic markers have been identified that may make this distinction more reliable (eg, glutamate/glutamine [GIx] for demyelination or 2-hydroxyglutarate [2HG] for isocitrate dehydrogenase [IDH] 1-mutant gliomas).

Is the Lesion a Primary or a Secondary Brain Tumor?

Several studies have shown the utility of MRS, particularly using the multivoxel technique for differentiation of glioblastoma from an intracerebral metastasis.⁴ The assessment of normal-appearing brain parenchyma in the immediate Download English Version:

https://daneshyari.com/en/article/5727792

Download Persian Version:

https://daneshyari.com/article/5727792

Daneshyari.com