

Investigating Serum Uric Acid as a Risk Factor in the Development of Delayed Renal Recovery in Living Kidney Donors

R.C. Bravo^a, M.B. Gamo^a, H.H. Lee^a, Y.E. Yoon^a, and W.K. Han^{a,b,*}

^aDepartment of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea; and ^bBrain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea

ABSTRACT

Background. Hyperuricemia has been associated with kidney disease and remains controversial with regard to its gender-specific differences and impact in living kidney donation.

Methods. Between 2006 and 2015, charts of live kidney donors who underwent nephrectomy and had a minimum follow-up of 1 year were reviewed. A total of 291 donors were included and divided based on gender-specific pre-donation serum uric acid (SUA) tertiles. Renal functional outcomes included were estimated glomerular filtration rate (eGFR) at 6-month and 1-year follow-up and percentage of donors with a 1-year eGFR <60 mL/min/1.72 m². Logistic regression analysis was done.

Results. Mean SUA tertiles were $5.8 \pm 1.1 \text{ mg/dL}$ in males and $4.1 \pm 1 \text{ mg/dL}$ in females. Females in the highest tertile (SUA >4.5 mg/dL) had lower 6-month ($59.9 \pm 10.3 \text{ vs} 66.9 \pm 14.1 \text{ vs} 67.3 \pm 12.1$; P = .018) and 1-year ($60.8 \pm 10.6 \text{ vs} 67.6 \pm 10.8 \text{ vs} 67.8 \pm 11.8$; P = .021) eGFR and a higher percentage of donors with 1-year eGFR <60 mL/min/1.73 m² (59.5% vs 31.6% vs 23%; P = .002) compared with donors in the lower SUA tertiles ($\leq 4.5 \text{ mg/dL}$). In males, there were similar eGFRs among SUA tertiles at 6-month and 1-year follow-up. In multivariate analysis, SUA was shown to be a significant predictor of developing stage 3 CKD (eGFR <60 mL/min/1.72 m²), 1 year after donation in females but not in males.

Conclusions. Predonation SUA level is associated with the development of delayed renal recovery (GFR $<60 \text{ mL/min}/1.72 \text{ m}^2$) 1 year after donation in females but not in males.

K IDNEY transplantation has become a treatment of choice among patients with end-stage renal disease (ESRD). Aside from reducing treatment morbidity, it has been shown to provide additional survival benefit, increase quality of life, and be a more cost-effective option relative to chronic dialysis [1–4]. The preferred option for transplantation has been toward live kidney donation because it has been shown to have a superior graft outcome compared with deceased donor transplantation [5]. In addition, there is already a shortage of deceased donor organs [6]. Therefore, efforts have been made to expand the eligibility criteria, while maintaining the safety of donors, for live kidney donation [7].

Donor risk factors such as older age, obesity, and hypertension were previously considered absolute contraindications for donation [7] but evidence continues to

0041-1345/17 http://dx.doi.org/10.1016/j.transproceed.2017.03.034 surface regarding the comparable safety of donors and nondonors alike [8], leading to shifts in the criteria for relative and absolute contraindications for live kidney donation [9].

Increased serum uric acid (SUA) has been linked to the development of renal dysfunction. Aside from evidence associating it with increased risk of development of hypertension and cardiovascular disease [10], it has been shown as a strong independent risk factor in type 2 diabetes mellitus [11] and diabetic nephropathy [12]. In addition, several studies have already associated increased SUA with the

^{*}Address correspondence to Woong Kyu Han, MD, PhD, Department of Urology, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752., Korea. E-mail: hanwk@yuhs.ac

Table 1. Baseline Characteristics of Donors Included in the Study

		N = 291				
	$\begin{array}{l} \text{Males} \\ \text{N} = 135 \end{array}$	Females $N = 156$	Р			
Age	$\textbf{38.5} \pm \textbf{12.4}$	44.4 ± 10.9	.000			
BMI	24 ± 2.3	$\textbf{23} \pm \textbf{2.9}$.002			
Systolic BP	123.8 ± 10.6	119.3 ± 12.8	.001			
Diastolic BP	75.5 ± 9.1	75.5 ± 10.6	.977			
SUA	5.8 ± 1.1	4.1 ± 0.8	.000			
Serum glucose	93.2 ± 9.1	$\textbf{92.8} \pm \textbf{8.4}$.700			
Baseline MDRD GFR	$\textbf{92.9} \pm \textbf{16.9}$	$\textbf{98.1} \pm \textbf{21.3}$.024			

Note: Data expressed as mean \pm standard deviation.

Abbreviations: BMI, body mass index; BP, blood pressure.

elevation of serum creatinine and increased incidence of chronic kidney disease (CKD) in a span of 2–10 years [13–19]. However, some studies were not able to show this same association with renal dysfunction [20–22].

Apart from its association with the development of CKD, there is evidence that women are more predisposed to urate-induced decrease in glomerular filtration rate (GFR) [23]. Studies supporting this increased susceptibility showed findings wherein the risk of gout and microalbuminuria in pre-hypertensives were elevated by a lower level of SUA in women than in men [24,25].

Several clinical studies have demonstrated that donor age and pre-donation GFR are strong predictors of developing CKD after kidney donation, but only a few studies have investigated the potential impact of pre-donation SUA in the residual renal function of a live kidney donor. Therefore, our aim was to investigate the possible association of pre-donation SUA with delayed renal recovery in living kidney donors, while keeping in mind potential genderspecific differences.

METHODS

Charts of living kidney donors who underwent nephrectomy in our institution from August 2006 to January 2015 were retrospectively reviewed. Recruited for the study were donors having a minimum follow-up of 1 year, in which there were 291 in total. Three surgeons performed all of the donor nephrectomies via video-assisted miniincision surgery. Data on pre-donation SUA, age, body mass index, blood pressure, and serum fasting glucose were extracted from each donor. Preoperative and postoperative glomerular renal function (estimated GFR [eGFR]) was estimated using the Modification of Diet in Renal Disease (MDRD) formula [26]. Donor candidates with baseline MDRD eGFR of <80 mL/min/1.73 m² along with diabetes or hypertension uncontrolled by a single medication were evaluated as unfit for donation.

Donors were grouped based on gender-specific pre-donation SUA tertiles and were followed up at 6 months and 1 year postdonation. The difference of eGFR among tertiles at pre-donation, 6 months, and 1 year and the percentage of donors with eGFR <60 mL/min/1.72 m² at 1 year post-donation were the main outcomes of the study.

Male and female donors were analyzed separately. Data were shown as mean \pm standard deviation for continuous variables, and as percentiles for categorical variables. Cut-off points to create SUA tertiles were based on the SUA values $<25^{\text{th}}$ percentile, and $>75^{\text{th}}$ percentile. The resulting SUA tertiles and eGFR at baseline and follow-up were analyzed. Variables between male and female groups were analyzed using independent sample *t* test, whereas Kruskal-Wallis and chi-square test were used to compare the variables among tertiles. Multivariate logistic regression was performed to determine the independent contribution of pre-donation SUA to the development of eGFR <60 mL/min/1.72 m² 1 year after donation. Statistical analysis was done using SPSS software SPSS software version 23.0, IBM SPSS Statistics, IBM Corporation, Armonk, NY, USA).

RESULTS

Of the 291 total donors, 135 (46.4%) were males and 156 (53.6%) were females. Mean age of donors were 38.5 ± 12.4 years and 44.4 ± 10.9 years for males and females, respectively. The mean pre-donation SUA was 5.8 ± 1.1 mg/dL for males and 4.1 ± 0.8 mg/dL for females. Other donor variables, expressed as mean \pm standard deviation, are shown in Table 1.

SUA tertiles were set as follows: males: SUA \leq 5.1 mg/dL, 5.2–6.4 mg/dL, and >6.4 mg/dL; females: SUA \leq 3.6 mg/dL, 3.7–4.5 mg/dL, and >4.5 mg/dL. Table 2 compares the baseline, 6-month, and 1-year post-donation MDRD eGFR, and the percentage of subjects with eGFR <60 mL/min/1.73 m² 1 year post-donation, among the tertiles of both genders. Females in the highest tertile (SUA >4.5 mg/dL) had a significantly lower 6-month (59.9 ± 10.3 vs 66.9 ± 14.1 vs 67.3 ± 12.1; P = .018) and 1-year (60.8 ± 10.6 vs 67.6 ± 10.8 vs 67.8 ± 11.8; P = .021) eGFR compared with those in the lower tertiles. In males, there were similar eGFR values among tertiles at baseline, 6-month, and 1-year post-

 Table 2. MDRD eGFR and Percentage of Donors With 1-Year eGFR <60 mL/min/1.73 m² According to Gender-Specific Tertiles of SUA

 Concentration

	Males				Females			
	SUA ≤5.1 mg/dL	SUA 5.2-6.4 mg/dL	SUA >6.4 mg/dL	Р	SUA ≤3.6 mg/dL	SUA 3.7-4.5 mg/dL	SUA >4.5 mg/dL	Р
Baseline eGFR	96.3 ± 18.3	94 ± 16.3	86.6 ± 14.6	.081	101.2 ± 19.8	99.8 ± 21.9	90.9 ± 20.8	.066
6-mo eGFR	$\textbf{62.8} \pm \textbf{12.7}$	62.4 ± 12.7	58.7 ± 7.7	.323	67.3 ± 12.1	66.9 ± 14.1	59.9 ± 10.3	.018
1-y eGFR	64.1 ± 13	$\textbf{62.6} \pm \textbf{11.5}$	60.1 ± 8.4	.197	67.8 ± 11.8	67.6 ± 60.8	60.8 ± 10.6	.021
1-y eGFR N (%)								
eGFR <60	14 (33.3)	23 (38)	18 (54.5)	0.460	10 (23.3)	24 (31.6)	22 (59.5)	.002
eGFR \geq 60	28	37	15		33	52	15	

Note: Data expressed as mean \pm standard deviation.

Download English Version:

https://daneshyari.com/en/article/5728772

Download Persian Version:

https://daneshyari.com/article/5728772

Daneshyari.com