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a  b  s  t  r  a  c  t

Reinforcement  learning  theory  distinguishes  “model-free”  learning,  which  fosters  reflexive  repetition  of
previously  rewarded  actions,  from  “model-based”  learning,  which  recruits  a mental  model  of  the  environ-
ment  to flexibly  select  goal-directed  actions.  Whereas  model-free  learning  is  evident  across  development,
recruitment  of  model-based  learning  appears  to increase  with age.  However,  the  cognitive  processes
underlying  the  development  of model-based  learning  remain  poorly  characterized.  Here,  we  examined
whether  age-related  differences  in  cognitive  processes  underlying  the  construction  and  flexible  recruit-
ment of  mental  models  predict  developmental  increases  in  model-based  choice.  In  a  cohort  of  participants
aged 9–25,  we  examined  whether  the  abilities  to infer  sequential  regularities  in  the  environment  (“sta-
tistical  learning”),  maintain  information  in  an  active  state  (“working  memory”)  and  integrate  distant
concepts  to solve  problems  (“fluid  reasoning”)  predicted  age-related  improvements  in  model-based
choice.  We  found  that age-related  improvements  in  statistical  learning  performance  did  not mediate  the
relationship  between  age  and  model-based  choice.  Ceiling  performance  on  our  working  memory  assay
prevented  examination  of its contribution  to model-based  learning.  However,  age-related  improvements
in  fluid  reasoning  statistically  mediated  the  developmental  increase  in  the  recruitment  of  a model-based
strategy.  These  findings  suggest  that  gradual  development  of fluid  reasoning  may  be  a critical  component
process  underlying  the  emergence  of  model-based  learning.

© 2016  The  Authors.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Individuals can recruit a variety of evaluative strategies to make
everyday decisions. Reinforcement learning theory distinguishes
two such strategies: model-based and model-free learning (Daw
et al., 2005, 2011; Glascher et al., 2010). Model-based learning
requires the construction of a cognitive model of potential actions
and their consequences, which can be consulted to determine the
best way to pursue a current goal. Such learning supports flexi-
ble behavior in novel situations and can readily take into account
changes in the environment. By contrast, model-free learning sim-
ply estimates the value of reflexively repeating an action based
on whether it previously led to good or bad outcomes, without
representing the specific outcomes themselves. While model-free
learning is computationally efficient, it cannot rapidly adjust to
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changes in the value of an outcome or changes in contingency
between an action and outcome.

Many decisions or actions can be evaluated in a model-based or
a model-free manner. Effective behavioral control often involves
striking a context-dependent balance between these deliberative
versus automatic strategies. Recent research suggests that while
model-free learning is consistently employed across developmen-
tal stages, recruitment of model-based learning tends to increase
with age (Decker et al., 2016). Across diverse decision-making con-
texts or tasks, younger individuals exhibit patterns of behavior that
reflect greater reliance on a model-free strategy, whereas older
individuals rely more on model-based learning (Decker et al., 2016;
Klossek et al., 2008; Piaget, 1954; Zelazo et al., 1996). The develop-
mental timepoint at which one typically shifts toward employing a
model-based strategy may  depend on both the intrinsic complexity
of the task at hand, as well as the maturity of the myriad cognitive
processes required for the formation and recruitment of a mental
model of that task.

To make goal-directed decisions, individuals must be able to
anticipate likely events, consider the consequences of their poten-
tial actions, and evaluate the most efficient means to obtain a
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desired outcome. The ability to recognize which events tend to fol-
low each other in sequence or covary with high probability is often
referred to as statistical learning (Turk-Browne et al., 2005). Sim-
ple forms of statistical learning are present in infants and children
(Amso and Davidow, 2012; Fiser and Aslin, 2002), demonstrat-
ing that individuals can build cognitive models of environmental
statistics from early on in development. However, in other tasks,
statistical learning performance has been observed to improve with
age (Schlichting et al., 2016), suggesting that learning of more
complex sequential structures may  emerge later in development.
More accurate representations of the statistical structure of a task
may  facilitate model-based choice. However, whether increased
recruitment of model-based learning with age might reflect devel-
opmental improvements in statistical learning remains an open
question.

Developmental changes in the reliance on model-based learning
might also reflect an increasing capacity to recruit learned cogni-
tive models to guide decisions. Working memory, the ability to
maintain mental representations in an active state despite inter-
ference, is a key component of model recruitment (D’Esposito and
Postle, 2015). Introducing working memory load during decision-
making reduces adults’ use of a model-based strategy (Otto et al.,
2013a), and high working memory capacity buffers individuals
from stress-induced impairment of model-based learning (Otto
et al., 2013b). Another important process potentially underlying
successful model recruitment is fluid reasoning, the capacity to
flexibly integrate independent goal-relevant associations across
domains. Fluid reasoning involves the reorganization, transforma-
tion, and extrapolation of learned conceptual relationships in order
to solve novel problems (Cattell, 1987; McArdle et al., 2002). Both
working memory and fluid reasoning have been shown to increase
from early childhood into young adulthood (Ferrer et al., 2009; Fry
and Hale, 1996), suggesting that either of these processes, or their
integrated function, may  foster increased recruitment of model-
based choice.

Building upon a previous finding that model-based reinforce-
ment learning increased with age from childhood into adulthood
(Decker et al., 2016), in this study, we sought to characterize the
cognitive underpinnings of this developmental trajectory. Given
previous observations of age-related changes in statistical learning,
working memory, and fluid reasoning, we examined the contribu-
tions of these putative component processes to the development
of model-based choice in a sequential reinforcement-learning task.
We found that fluid reasoning, but not statistical learning, mediated
the relationship between age and model-based choice. Ceiling per-
formance on our working memory assay prevented examination of
its contribution to model-based learning. Collectively, these find-
ings suggest that the protracted development of fluid reasoning
ability may  be a critical process underpinning the gradual emer-
gence of model-based learning.

2. Methods

2.1. Participants

22 children (aged 9–12), 23 adolescents (13–17), and 24 adults
(18–25) took part in this study. All participants, and parents of
minors, provided written informed consent according to the pro-
cedures of the Weill Cornell Medical College Institutional Review
Board and received monetary compensation for participation. Sub-
jects completed a sequential reinforcement-learning task while
undergoing a functional MRI  scan. Neuroimaging data are not
analyzed or reported here. Subjects also completed a statisti-
cal learning task, and two subtests of the Wechsler Abbreviated
Scale of Intelligence (WASI, matrix-reasoning and vocabulary

sections). Subjects who  missed more than 15 trials (10% of tri-
als) during the reinforcement-learning task were excluded from
analysis, leaving 19 children (13 females, 10.5 ± 1.1 years), 22 ado-
lescents (12 females, 14.7 ± 1.5 years) and 23 adults (14 females,
21.6 ± 2.1 years) in the final sample. Of these participants, statisti-
cal learning task data for 1 child was not acquired due to a computer
malfunction, 1 adolescent and 2 adults did not complete the WASI
matrix-reasoning subtest, and 1 adolescent and 2 adults did not
complete the WASI vocabulary subtest. A subset of participants (14
children, 17 adolescents, 18 adults) also completed the listening
recall subtest of the Automated Working Memory Assessment.

2.2. Reinforcement-learning task

The two-stage sequential reinforcement-learning task was
adapted for developmental populations by Decker et al. (2016) from
a task designed by Daw et al. (2011) to dissociate model-based and
model-free evaluative strategies (Fig. 1A). In this paradigm, par-
ticipants were tasked with collecting space treasure, and were told
they would be paid a monetary bonus based on the amount of space
treasure that they found. At the first stage of each trial, participants
selected one of two  spaceships (“first-stage choice”) that would
make a probabilistic transition to a red or purple planet. Each space-
ship transitioned to one planet more frequently than the other (70%
of trials versus 30%). These “common” and “rare” transition proba-
bilities did not change during the task. Once at a planet, participants
then selected one of two aliens to ask for space treasure (“second-
stage choice”). Each alien provided treasure according to a slowly
drifting probability of reward. Subjects had three seconds to make
a choice at each stage.

The task was designed to dissociate use of a model-based strat-
egy, in which individuals recruit a mental model of the task’s
probabilistic state transition structure, from use of a model-free
strategy, which requires only cached estimates of the past rewards
associated with preceding first-stage actions.

All participants played a 50-trial tutorial to become familiar with
the structure of the task before completing the 150-trial task in
the scanner; the tutorial and full versions of the task had differ-
ent colored stimuli but the same task structure and rules. During
the tutorial, participants were instructed that each spaceship usu-
ally went to a specific planet, but had to learn the transitions and
probabilities themselves from the task. All subjects, regardless of
performance, received a fixed bonus payment at the end of the scan.

Using a previously described analytical approach (Daw et al.,
2011), we  fit a hybrid reinforcement-learning model to partici-
pants’ choice data. The hybrid model allows participants’ choices
to reflect a weighted average of both model-free and model-based
evaluation algorithms. Relative weighting of the two strategies is
parameterized by w, where 0 reflects purely model-free evaluation
and 1, purely model-based. The model-free algorithm implemented
is a SARSA(�) temporal difference algorithm that incrementally
updates the value of first-stage stimuli based on both the learned
value of a second-stage state and the received reward. The lat-
ter is modulated by an eligibility trace parameter lambda (�) that
only carries value across stages within the same trial. By contrast,
the model-based algorithm computes the value of each first-stage
choice by multiplying second-stage values by the 70%/30% transi-
tion probability. Both algorithms update the second-stage stimulus
values the same way, incrementing by the reward-prediction error
multiplied by a learning rate alpha (�). At each first and second
stage decision point, a softmax choice rule is used to assign a
probability to each action based on the weighted model-free and
model-based values of all available actions; this softmax rule is
parameterized by a single inverse temperature parameter (�). A
stay bias parameter (p), reflects value-independent perseveration
across trials. For each participant’s data, the model-based weight
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