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a b s t r a c t

In this paper a general framework is proposed for understanding and analysing more than two consensus
components in projective mapping (also known as Napping�) studies. Focus is on how two models, mul-
tiple factor analysis (MFA) and individual differences scaling (INDSCAL) based on the weighted Euclidean
model (WEM), relate to each other and to the general framework. The stability of the consensus config-
urations of both methods are compared. The relations between the results of the two methods are inves-
tigated using the RV coefficient and an alternative index called SMI which gives equal weight to the axes
regardless of the relative size of the singular values. The methods are tested and compared using three
datasets and simulations.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last couple of decades there has been an important devel-
opment of new and alternative sensory techniques, sometimes
referred to as rapid sensory methods (Valentin, Chollet, Lelievre,
& Abdi, 2012; Varela & Ares, 2012; Varela & Ares, 2014). These
methods have emerged as a response to the fact that regular quan-
titative descriptive analysis (QDA) can be considered quite rigid
and time consuming. In this paper we will focus on the so-called
projective mapping method (Risvik, McEwan, Colwill, Rogers, &
Lyon, 1994), which has been later known as Napping� (Pagès,
2005). This method has several interesting characteristics since it
can be used with untrained assessors and provides information
that is not restricted to intensities for a number of pre-specified
attributes. The method is based on asking assessors to place sam-
ples on a sheet of paper (or rectangular surface on a computer
screen) according to similarities and differences. The coordinates
of the samples along the ‘‘vertical” and ‘‘horizontal” directions of
the sheet are then used for data analysis. Usually, the assessors
are also asked to put words on the sheet that characterize the dif-
ferent samples or groups of samples. This last descriptive step is
usually referred to as ultra-flash profiling (Perrin & Pagès, 2009).

For most applications of projective mapping, generalized Pro-
crustes analysis (GPA, Gower, 1975; Gower & Dijksterhuis, 2004)
and Multiple factors analysis (MFA, Abdi, Williams, & Valentin,
2013; Escoufier & Pagès, 1994; Pagès, 2004) are used for data anal-
ysis. GPA is based on rotating and scaling the coordinates of the
assessor data before calculating the average, known as consensus
configuration. MFA, on the other hand, concatenates the individual
data tables after an individual scaling and performs regular princi-
pal components analysis (PCA) to obtain the consensus. Another
model, which is sometimes used for interpreting projective map-
ping data, is individual differences scaling (INDSCAL) based on
the so-called weighted Euclidean model (WEM, Barcenas,
Elortondo, & Albisu, 2004; Carroll & Chang, 1970) for the distances
between the objects. Husson and Pages (2006) provide an interest-
ing discussion of some fundamental geometrical aspects of
INDSCAL. In all cases it is useful to look at both the consensus
and individual configurations (Tomic, Berget, & Næs, 2015).

Projective mapping data are essentially two-dimensional, but
when applying statistical techniques such as MFA it is possible to
extract and interpret more than two PCA components (Nestrud &
Lawless, 2008). The most plausible interpretation of this is that
assessors rely on different characteristics of samples for assessing
their similarities and differences. In other words, they use diver-
gent criteria, or put different emphasis on different aspects of the
samples. Therefore, considering more than two dimensions can
enable the identification of all the sensory characteristics responsi-
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ble for the perceived similarities and differences among samples.
In this sense, Vidal et al. (2016) showed that considering only
the first two dimensions of the consensus configuration can poten-
tially underestimate the complexity of consumers’ sensory percep-
tion of samples. Despite this fact, most applications of the
projective mapping technique limit themselves to consider only
two dimensions in the consensus configuration, although a few
papers extend the interpretation up to four. As a reference point,
from 46 publications in Food Quality and Preference and Food
Research International that have ‘‘projective mapping” or ‘‘nap-
ping” in their tittles, abstract or keywords (Scopus search), only
six go beyond the second dimension (and for the most only 3 com-
ponents) for interpretation, four in product characterization appli-
cations (Cadena et al., 2014; Fariña et al., 2015; Kim, Jombart,
Valentin, & Kim, 2013; Marcano, Ares, & Fiszman, 2015) and two
in methodological studies (Vidal et al., 2014; Vidal et al., 2016)

This paper focuses on stability, precision and interpretation
aspects when estimating more than two dimensions in the analysis
of projective mapping data. In particular, we will describe a frame-
work that can be used as a basis for better understanding of the
concept of more than two underlying dimensions. The two most
used methods in the area that can also handle more than two
dimensions, INDSCAL and MFA, will then be related to this general
framework. This will also shed some light onto conceptual differ-
ences between the two methods. The INDSCAL and MFA will then
be compared both using a simulation study and using three differ-
ent projective mapping data sets collected with different product
categories (yoghurt, perfumes and chocolate milk). The methods
will be compared with respect to how similar they are, with
respect to how good they are at estimating the true consensus
(in the simulations) and how stable they are with respect to the
size of the data set. A random reduction is tested, but also data
reduction based on poor model fit will be considered. The aim of
the paper is not to propose a unique way of extracting more than
two components from projective mapping data, but merely to pro-
vide some insight into the importance of incorporating more than
two components and what are possible advantages and drawbacks
of the methodologies tested. Focus will be on three components
since one will seldom go beyond this in practical applications of
projective mapping data (see also references above), but some dis-
cussion will also be given to four components. Method compar-
isons will be done using the RV coefficient (Robert & Escoufier,
1976) and a newly developed alternative putting equal weight on
the singular vectors (the SMI, Indahl, Liland, & Næs, 2016). It must
be emphasized that the method comparison in this paper is pri-
marily based the consensus configurations and that a number of
additional tools are available both for MFA and INDSCAL for assess-
ing validity and for more detailed interpretation (see e.g Pagès
(2014) and Tomic et al. (2015)).

2. Theory

2.1. The underlying mental model

Even though the underlying product space may be multidimen-
sional, in a projective mapping task with focus on only two dimen-
sions, each assessor is forced to focus on a subset of the
dimensions, either separately or in combination (Hopfer &
Heymann, 2013; Nestrud & Lawless, 2011 and Dehlholm, 2014).
Since individual differences in consumers’ cognitive strategies
and factors related to the test can affect the sensory characteristics
or dimensions used ((Jaeger, Wakeling, & MacFie, 2000; Malhotra,
Pinson, & Jain, 2010; Vidal et al., 2016), the projective maps from
the different assessors my turn out to be very different from each
other.

In this paper we will assume that the underlying product space
can be represented by A sensory dimensions or latent variables
(the coordinates referred to as X) that can be perceived by the
assessors. One can think of these latent variables as representing
scores from for instance a PCA model in A dimensions with each
point in the space corresponding to an object. Note that the coor-
dinates are not unique; any linear transform of X will play the
same role in this context. In this paper boldface will be used for
matrices and vectors and italics will be used for scalars.

We will here consider the individual projective mapping data Yk

(two columns and N rows, k = 1,. . .,K) as individual functions fk of
the underlying latent variables X, i.e. the data Yk for assessor k
can be represented as

Yk ¼ f kðXÞ þ Ek ð1Þ
where E represents the random noise. The most important chal-
lenge in practice is to reveal X from the Yk data, but the individual
differences represented by fk are also of interest in many cases
(Tomic et al., 2015). We will always work with centered Y data,
so without loss of generality we will assume that the center of X
is zero. For the purpose of interpreting the coordinates of X, infor-
mation from the descriptive step can be useful (ultra-flash
profiling).

Certain assumptions must be made on the f’s in order to make
estimation of X possible. The simplest assumption is that the f’s
represent linear functions of X. As will be shown below this
assumption is needed in order to see how concrete and established
methods are related to the framework in Eq. (1). With the linearity
assumption, the model (1) becomes

Yk ¼ XRk þ Ek ð2Þ
where the Rk’s are matrices of individual constants. In order to bet-
ter understand how this model relates to individual differences in
practice, it may be useful to consider a couple of examples: If for
instance the Yk for assessor k consists of information only along
the two first dimensions of X, the last rows (after 2 components)
of Rk will consist of zeros only. If the columns of Yk on the other
hand are combinations of several underlying dimensions, the Rk

will have at least one position different from zero in each of the
actual rows.

In most practical applications of methods used for projective
mapping data, focus is on 2 dimensions (see above), but in princi-
ple there can be 3 and even 4 components in the underlying space
(X). Most consumers generally use the full bi-dimensional space
for building their maps. However, it has been reported that about
6–15% of the judges have ‘‘problems” with the projective mapping
task, being unable to create a bi-dimensional representation of the
products (Dehlholm, 2014; Hopfer & Heymann, 2013). In these
cases, consumers would be sorting or ranking the samples into
groups following one dimension.

In the notation below we will save the X for the underlying
mental model above and let T and V be the coordinates for sub-
space estimates obtained by MFA and INDSCAL respectively.

2.2. MFA and its relation to the general framework

The MFA is defined as a PCA of the concatenated matrix
Y ¼ ½Y1; . . . ;YK � where each Yk is first centered and divided by the
first singular value of the matrix. The Y is then modelled by the
PCA model

Y ¼ TPþ E ð3Þ
where T is the consensus scores matrix (also this centered since Y
is) and the P is the loadings matrix of the dominating principal com-
ponents. The matrix E represents the noise or the minor compo-
nents of Y that one is usually not interested in. Note that other
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