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a b s t r a c t

Recipes in cookbooks are presented as a list of directions describing how to cook fixed amounts of ingre-
dients to prepare pleasurable food. Similarly, industrial food products can be considered as processed
mixtures of ingredients for which process parameters and mixture parameters should be investigated
simultaneously when trying to improve their nutritional and sensorial properties. This work proposes
a simple, generic and efficient approach to combine process and mixture factors in the same design by
handling easily any mixture constraint in the frame of fractional factorial designs. The approach has been
successfully applied in many situations and is illustrated through a case study to improve an all-family
cereal recipe both in terms of nutritional value (i.e. 50% sugar reduction and partial replacement of
refined wheat flour by whole grains) and sensory properties.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial food products can be simply described as processed
mixtures of ingredients, but the complexity of product innovation
and renovation lies in the fact that both process and mixture are
highly multifactorial (i.e. often dozens of ingredients processed
using multiple complex steps such as drying, roasting, cooking,
mixing or homogenizing, each of them being described by multiple
factors such as temperature, pressure or duration). In order to cope
with this complexity, it is not surprising that the impact on pro-
duct characteristics of process factors and mixture factors are often
investigated separately (using respectively classical factorial
design and classical mixture design techniques), although this
one-group-of-factor-at-a-time approach suffers the same draw-
back as the one-factor-at-a-time approach, namely that it leads
to local instead of global solutions.

Combining process and mixture factors in the same design is
therefore a necessity that various authors discussed in the past.
Scheffé (1963) proposed to make all combinations of a mixture
design and a factorial design (i.e. Mixture � Process). As an exam-
ple, Naes, Faergestad, and Cornell (1998) used a design with 10
mixtures and 32 process factors (10 � 32) leading to 90 experi-
ments. In practice, such numbers of experiments are much too

large for sensory assessments. As a consequence, Cornell (2002)
proposed to combine independent fractions of mixture and process
but this approach covers the experimental region in a highly non-
homogenous way. More recently, approaches such as D-optimal
designs (L’Hocine & Pitre, 2016) or space-filling designs (Beal,
Claeys-Bruno, & Sergent, 2014) became popular because they are
designed to ‘‘optimally” cover any type of experimental region,
but defining optimality is unfortunately not straight-forward in
the food context. On one hand, D-optimality (as well as other com-
mon optimality criteria such as A, C, E or I-optimality) is bound to
the underlying model (i.e. D-optimality minimizes the overall vari-
ance of the estimated regression coefficients), but this underlying
model is generally unknown, especially for highly multivariate
responses such as sensory profiles. On the other hand, coverage
optimality is completely independent of any model but is bound
to the definition of a distance between any two points of the exper-
imental region (i.e. it minimizes the maximal distance between
any point of the experimental region with its nearest experiment),
and defining accurately such a distance is still an unsolved problem
in case of highly asymmetrical experimental regions (which is
common when mixing macro-nutrients, with ranges typically
smaller than 10%, and micro-nutrients, with ranges typically smal-
ler than 1%).

In order to overcome these issues, we propose an easy proce-
dure for incorporating common mixture constraints into classical
fractional factorial designs. This very flexible approach has been
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presented at Agrostat symposium in Lausanne (Rytz et al., 2016)
and is illustrated here through an example on all-family cereals.
Schematically, a basic all-family cereal recipe is made of 80% wheat
flour and 20% sucrose that is mixed, soaked, cooked and dried. In
order to improve the nutritional value of the product, the aim
was to reduce its final sugar content by 50%, without using any
intense sweetener or flavour, while maintaining or improving sen-
sory properties. Since a simple recipe with 90% wheat flour and
10% sucrose is rejected by consumers, a two-step approach consist-
ing of the following steps was used:

1) A design with 8 experiments to test whether natural gener-
ation of biscuit and caramel notes during the process could
be a winning strategy thanks to their congruency with per-
ceived sweetness (as previously demonstrated for model
systems by Labbe, Rytz, Morgenegg, Ali, and Martin (2007)).

2) A design with 16 experiments to optimise nutritional offer
by replacing part of the wheat flour by whole grain.

These two steps led to a final product composition of 75% wheat
starch, 15% whole grains and 10% total sugars.

2. Material and method

2.1. Mixture designs to handle mixture constraint

Most food products are mixtures of q ingredients. Each ingredi-
ent can vary in quantity xi (i = 1. . .q) but they have to sum to a con-
stant c. The basic constraints of an experiment with mixtures are:

Xq
i¼1

xi ¼ c and 0 6 xi 6 c; i ¼ 1; 2; :::; q

In this simple case, the experimental region is a simplex that
Scheffé (1958) proposed to cover homogeneously with simplex-
lattice and simplex-centroid designs. In most food experiments,
additional constraints have to be introduced, namely that most
ingredients have to vary in ranges that are bound by lower (ai)
and upper (bi) limits:

0 6 ai 6 xi 6 bi 6 cði ¼ 1 � � � qÞ
In this more general case, the experimental region is no more a

simplex, but a hyper-polyhedron. Cornell (2002) made an excellent
review of different approaches to cover such hyper-polyhedron,
including extreme vertices designs (with associated XVERT algo-
rithm basing on an A-optimality criterion), Saxena and Nigam
designs, D-optimal designs or space-filling designs. A nice example
of such an experimental design that optimised sensory properties
of pizza while reducing salt is given by Guilloux, Prost, Courcoux,
Le Bail, and Lethuaut (2015).

2.2. Box-Hau projected fractional factorial designs to handle mixture
constraint

Box and Hau (2001) proposed a procedure that allows fraction-
ating simultaneously the mixture and the process parts. For a food
product consisting of q ingredients to be processed according to n
factors, the basic idea is to build a full factorial 2q+n or a fractional
factorial 2q+n�a (Box, Hunter, & Hunter, 2005) or any orthogonal
array (Hedayat, Sloane, & Stuken, 1999) and then to project this
initial design onto the hyper-polyhedron defined by the mixture
restrictions. As an example, Bjerke, Naes, and Ellekjaer (1999) use
a 25-1 fractional factorial design including two 2-levels process fac-
tors and three projected mixture factors. Other examples allow
handling double mixtures (Dingstad, Egelandsdal, & Naes, 2003)
or split-plot structures (Måge & Naes, 2005). The flexibility and

efficiency that Hau and Box introduced with their projection is
very important in case of near-to-spherical experimental regions,
but fails to cover the whole experimental region when dealing with
asymmetrical experimental regions, because it relies on a symmet-
rical arrangement of experiments around a reference.

2.3. Adjusting fractional factorial designs to handle mixture constraint

It is proposed to make profit from all advantages of the Box-Hau
projection, while simplifying the adjustment (i.e. no need for a ref-
erence point) and making it therefore very generally applicable (i.e.
homogeneous covering of asymmetrical experimental regions).
The proposed adjustment is described below in three steps.

2.3.1. Step 1: define experimental region
Consider the bounds of the q ingredients as given by the practi-

tioner. Let ai and bi respectively be these lower and upper bounds
of the ingredients (i = 1. . .q). It is easy to demonstrate that the
experimental region is in fact restricted to the following bounds:

a0i ¼ max ai; c �
X
j–i

bj

 !

b0
i ¼ min bi; c �

X
j–i

aj

 !

Only these bounds are further considered.

2.3.2. Step 2: build a pseudo-mixture design based on an orthogonal
array

Start with any 2-level orthogonal array DInit consisting in n
experiments (e.g. fractional factorial design). For each experiment
and each factor, replace the low level by the lower bound a0 i and
the high level by the upper bound b0

i. Let us call this new design
DIntermediate and its elements xti (t = 1. . .n, i = 1. . .q). In DIntermediate,
none or almost none of the mixtures sum to the constant total
amount c.

2.3.3. Step 3: transform the pseudo-mixture design into a mixture
design

The transformation consists in adjusting the mixtures according
to their lack (i.e. c �P xtj > 0) or excess (i.e.

P
xtj � c > 0) of total

amount proportionally to the range of variation of their respective
components (b0

i–a0 i). The final design DFinal is defined as follows by
its elements x0ti (t = 1. . .n, i = 1. . .q):

x0ti ¼
a0i þmax 0; c �

Xq
j¼1

xtj

 !
b0i�a0

ið ÞP
j;xtj¼a0 j b0j�a0

j

� � if xti ¼ a0
i

b0
i �max 0;

Xq
j¼1

xtj � c

 !
b0i�a0

ið ÞP
j;xtj¼b0 jðb

0
j�a0

j
Þ if xti ¼ b0

i

8>>>>><
>>>>>:

As an example, let us consider the simple mixture of 3 ingredi-
ents with bounds ai = a0i = 0 and bi = b0

i = 1 (i = 1, 2, 3), summing to a
constant c = 1. Fig. 1 shows that the full factorial design 23 gener-
ates a simplex-lattice design {3;2} (i.e. simplex with 3 vertices
allowing to fit a 2nd order model) with 2 added centre points. In
this simple case, the performed adjustment is a central projection
(with centre = 0) from the 8 experiments of the 3-dimensional
cubus onto the 2-dimensional simplex defined by the vertices A,
B and C. Similarly, the fractional factorial design 23-1 defined by
experiments P1, P2, P3 and P4 generates a simplex-lattice design
{3;1} with 1 added centre point.

The R software (R Development Core Team, 2008) was used to
perform all calculations and statistical analyses.
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