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a b s t r a c t

Count models such as negative binomial (NB) regression models are normally employed to establish a
relationship between area-wide traffic crashes and the contributing factors. Since crash data are collected
with reference to location measured as points in space, spatial dependence exists among the area-level
crash observations. Although NB models can take account of the effect of unobserved heterogeneity (due
to omitted variables in the model) among neighbourhoods, such models may not account for spatial
correlation areas. It is then essential to adopt an econometric model that takes account of both spatial
dependence and uncorrelated heterogeneity simultaneously among neighbouring units. In studying the
spatial pattern of traffic crashes, two types of spatial models may be employed: (i) classical spatial models
for higher levels of spatial aggregation such as states, counties, etc. and (ii) Bayesian hierarchical models
for all spatial units, especially for smaller scale area-aggregations. Therefore, the primary objectives of this
paper is to develop a series of relationships between area-wide different traffic casualties and the con-
tributing factors associated with ward characteristics using both non-spatial models (such as NB models)
and spatial models and to identify the similarities and differences among these relationships. The spatial
units of the analysis are the 633 census wards from the Greater London metropolitan area. Ward-level
casualty data are disaggregated by severity of the casualty (such as fatalities, serious injuries, and slight
injuries) and by severity of the casualty related to various road users.

The analysis implies that different ward-level factors affect traffic casualties differently. The results also
suggest that Bayesian hierarchical models are more appropriate in developing a relationship between area-
wide traffic crashes and the contributing factors associated with the road infrastructure, socioeconomic
and traffic conditions of the area. This is because Bayesian models accurately take account of both spatial
dependence and uncorrelated heterogeneity.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The primary objective of this study is to develop a series of rela-
tionships (i.e., crash prediction models) between area-level traffic
casualties and their contributing factors using both non-spatial
(such as negative binomial models) and spatial models (such as
traditional spatial models and Bayesian hierarchical models) and
to compare the results obtained from these models. The spatial
units of this analysis are the 633 census wards from London. Ward-
level crash data are disaggregated by severity of the casualty such
as fatalities, serious injuries and slight injuries and by severity of
the casualty associated with various road users such as motorised
transport (MT), non-motorised transport (NMT) and vulnerable
road user (VRU). A range of potential contributing factors asso-
ciated with ward-level road infrastructure, traffic, socioeconomic
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characteristics including traffic speed, flow and road curvature are
considered in this study.

Crash prediction models to explain observed cross-sectional
variations in crash counts using macro-structural covariates at
various levels of area-aggregation (e.g., states, counties, other cen-
sus tracts, etc.) are becoming a fairly routine component in crash
research. Researchers usually seek to establish links between the
road infrastructure, environmental, traffic, and socioeconomic con-
ditions in spatial units with the counts or rates of traffic crashes
observed at various spatial units. To isolate and identify the
macro-processes leading to different types of crashes, researchers
sometimes estimate crash models with disaggregated crash rates
with varying bases for the disaggregation such as by severity of the
casualty (such as fatalities, serious injuries, and slight injuries) or by
severity of the casualty related to various road users (e.g., motorised
transport, vulnerable road users, etc.).

For instance, Levine et al. (1995a) derived a series of statis-
tics that provide explicit measurements of a spatial pattern of
crashes and also provide insights into how certain relationships
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(for instance, between alcohol consumption and injury severity)
have a spatial dimension. Honolulu census tract data have been
utilised to explain spatial variation in motor vehicle crashes (Levine
et al., 1995b). Kim and Yamashita (2002) conducted an empiri-
cal analysis of motor vehicle crashes and land use variables with
the aid of geographic information systems (GIS). Hadayeghi et al.
(2003) developed a series of macro-level crash prediction mod-
els that estimate the number of crashes in planning zones in the
city of Toronto as a function of zonal characteristics. Graham and
Glaister (2003) analysed ward-level (a census tract) traffic casu-
alty data in England to see how urban scale, density and land use
mix affect pedestrian casualties. Noland and Quddus (2004a) also
conducted a spatially disaggregated ward-level analysis of Eng-
land to identify various factors affecting road casualties and were
based on cross-sectional traffic crash data associated with differ-
ent levels of spatial aggregation, most of these above studies were
employed a negative binomial (NB) count model. NB models have
also been used to develop crash models for cross-sectional time-
series data (e.g., Amoros et al., 2003; Noland and Quddus, 2004b1,
and Noland and Oh, 20042). Integrating NB count models with geo-
graphic information systems (GIS), Kim et al. (2006) established the
nature and magnitude of relationships between land use, popula-
tion, economic development and crashes using a uniform 0.1 square
mile grid structure from Hawaii. Their study confirmed the finding
of Ladron de Guevara et al. (2004) that population-based metrics
by spatial units are the most statistically significant predictors of
crash occurrences. Kim et al. (2006) recommended the use of a
spatial statistical analysis when developing relationships between
area-wide land use variables and traffic crashes.

Crash data are collected with reference to location measured as
points (x- and y-coordinates) in space. According to LeSage (1998),
two problems arise when sample data has a locational dimen-
sion: (1) spatial correlation exists between the observations, and
(2) spatial heterogeneity occurs in the relationships that are mod-
elled. Traditional econometrics (including NB models used in crash
research) has largely ignored the issue of spatial correlation that
violates the traditional Gauss–Markov assumptions used in regres-
sion modelling.

An alternative approach is to employ spatial econometric mod-
els. Anselin (1988) provides a complete treatment of many aspects
of spatial econometrics including the application of Bayesian meth-
ods in spatial econometrics. There are generally two methods in
spatial econometrics: (1) traditional econometric methods suitable
for continuous data, and (2) Bayesian hierarchical methods suit-
able for non-negative random count data. At higher levels of spatial
aggregation (e.g., districts, counties, states), when the number of
counts (e.g., crashes) is sufficiently large and non-zero counts are
observed in most of the sampled spatial units, the count outcomes
may be considered continuous, and traditional spatial analytical
methods have been utilised (Messner et al., 1999; Baller et al., 2001).

However, Bhati (2005) indicated that inferences derived from
traditional spatial models could be misleading as this does not
reflect the true underlying data generating processes. Moreover,
as the spatial unit of analysis becomes smaller (such as wards, zip-
code, post-code, etc.), the number of count outcomes observed in
each sampled unit decreases and the distribution of such counts
becomes a highly skewed (to the right) distribution as the number
of spatial units with zero counts increases. In order to overcome
these issues, researchers used a more flexible Bayesian method in
spatial econometrics (Besag et al., 1991; Mollie, 1996; Wolpert and
Ickstadt, 1998; Best et al., 2000) and the application of such meth-

1 They used a random effects NB model.
2 They used a fixed effects NB model.

ods to crash modelling can be found in Miaou et al. (2003), MacNab
(2004), Aguero-Valverde and Jovanis (2006) and Li et al. (2007).
Miaou et al. (2003) provides a good overview on the appropriate-
ness of employing a Bayesian hierarchical model in area-wide crash
modelling.

Different area-wide characteristics were considered in previ-
ous research while developing a crash prediction model using
either a non-spatial model (such as an NB model) or a spatial
model. These include factors associated with land use (e.g., Graham
and Glaister, 2003; Kim et al., 2006), road characteristics such as
road length, junctions and roundabouts (e.g., Noland and Quddus,
2004a), environmental conditions such as total precipitation, num-
ber of rainy days per year and total snowfall (e.g., Aguero-Valverde
and Jovanis, 2006), and various socioeconomic factors such as pop-
ulation, poverty, and employment (e.g., Kim et al., 2006). Some
other important area-wide characteristics that affect area-wide
traffic crashes are less considered in the literature. These include
traffic speed, traffic flow, and road curvature measured at spatial-
level.

The rest of the paper is structured as follows. In the next sec-
tion, a brief discussion of the data used in the analysis is presented.
This is followed by a description of the models considered in this
research. Then, the results obtained from the developed models
are presented with the similarities and differences among them.
Finally, conclusions are drawn and further research suggestions are
discussed.

2. Data

The spatial units of the analysis are the census wards from the
Greater London metropolitan area. According to the UK Census
2001, there are 633 wards in London and each ward consists, on
average, of about 11,350 resident population. The electronic ward
boundary data were obtained from UK Ordnance Survey (OS) data
via EDINA services. Data on traffic casualties were extracted from
the STATS19 UK National Road Crash Database that has informa-
tion on the recorded location of each crash. Ward-level casualty
data were extracted from the STATS19 data using a GIS technique.
Since previous research suggests that factors affecting traffic casu-
alties vary by severity of the casualty (e.g., Noland and Quddus,
2004a; Aguero-Valverde and Jovanis, 2006), ward-level traffic casu-
alty data were disaggregated into fatalities, serious injuries and
slight injuries. Ward-level casualty data were also disaggregated
by severity of the casualty associated with motorised transport
(MT3), non-motorised transport (NMT4), and vulnerable road users
(VRU5) to identify any differences in influential factors. Since a large
number of wards have a zero fatality count, fatalities are com-
bined with serious injuries resulting in a killed or serious injury
(KSI) category. Casualty data were aggregated for 3 years of data,
2000–2002. Fig. 1 shows the spatial distribution of total serious
casualties (for years 2000–2002). It is noticeable from this figure
that traffic casualties are spatially correlated among neighbouring
wards.

There are three major categories of explanatory variables:
(1) traffic characteristics, (2) road characteristics and (3) socio-
demographic factors. Environmental factors are not considered in
this study as weather conditions such as snowfall and rainfall tend
to be similar across different wards in London.

3 Cars, taxi, bus, goods vehicles, and other motor vehicles (motorcycles are not
included).

4 Pedestrians, cyclists, horse riders.
5 Motorcyclists, pedestrians, cyclists, horse riders.
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