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An essential step toward understanding neural circuits is

linking their structure and their dynamics. In general, this

relationship can be almost arbitrarily complex. Recent

theoretical work has, however, begun to identify some broad

principles underlying collective spiking activity in neural

circuits. The first is that local features of network connectivity

can be surprisingly effective in predicting global statistics of

activity across a network. The second is that, for the important

case of large networks with excitatory-inhibitory balance,

correlated spiking persists or vanishes depending on the

spatial scales of recurrent and feedforward connectivity. We

close by showing how these ideas, together with plasticity

rules, can help to close the loop between network structure

and activity statistics.
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Introduction
Here, we focus on relating network connectivity to col-

lective activity at the level of spike times, or correlations in

neurons’ spike trains (see Box 1). Such correlations are

known to have complex but potentially strong relations

with coding in single neurons [1] and neural populations

[2–5], and can modulate the drive to a downstream

population [6]. Moreover, such correlated activity can

modulate the evolution of synaptic strengths through

spike timing dependent plasticity (STDP) ([7,8��,9],
but see [10]).

Collective spiking arises from two mechanisms: connec-

tions among neurons within a population, and external

inputs or modulations affecting the entire population

[11–13]. Experiments suggest that both are important.

Patterns of correlations in cortical micro-circuits have

been related to connection probabilities and strengths

[14]. At the same time, latent variable models of dynamics

applied to cortical data have revealed a strong impact of

global inputs to the population [15,16��,17,18].

At first, the path to understanding these mechanisms

seems extremely complicated. Electron microscopy

(EM) and allied reconstruction methods promise connec-

tomes among thousands of nearby cells, tabulating an

enormous amount of data [19–25]. This begs the ques-

tion of what statistics of connectivity matter most — and

least — in driving the important activity patterns of neural

populations. The answer would give us a set of meaning-

ful ‘features’ of a connectome that link to basic statistical

features of the dynamics that such a network produces.

Our aim here is to highlight recent theoretical advances

toward this goal.

Mechanisms and definitions: sources and
descriptions of (co)variability in spike trains
Neurons often appear to admit spikes stochastically. Such

variability can be due to noise from, for example, synaptic

release [28], and can be internally generated via a chaotic

‘balanced’ state [29,30,31��]. As a consequence, the struc-

ture of spike trains is best described statistically. The

most commonly used statistics are the instantaneous

firing rate of each neuron, the autocorrelation function

of the spike train (the probability of observing pairs of

spikes in a given cell separated by a time lag s), and the

cross-correlation function (likewise, for spikes generated

by two different cells). As shown in Box 1, even weak

correlations yield coherent, population-wide fluctuations

in spiking activity that can have a significant impact on
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cells downstream [6]. Similarly, higher-order correlations

are related to the probability of observing triplets, quad-

ruplets or more spikes in a group of neurons, separated by

a given collection of time lags (Box 1).

Spike train covariability from recurrent
connectivity and external input
In recent years, neuroscientists have advanced a very

general framework for predicting how spike train
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Box 1 Spike train statistics.

The spike train of neuron i is defined as a sum of delta functions, yiðtÞ ¼ P
kd t � tki
� �

; tki is the time of neuroni’s kth spike. Spike train moments can

be obtained from samples of the spike trains of each neuron in a population. The first spike train moment is the instantaneous firing rate, hyi(t)i. The

angular brackets hi denote an average over trials. The correlation of two spike trains is mij(ti, tj) = hyi(ti)yj(tj)i. If i = j it is an autocorrelation, otherwise

a cross-correlation. In general a nth order correlation, or moment, of n spike trains, is defined as a trial-average of products of those spike trains:

mi;j;...;nðti; . . . ; tnÞ ¼ h
Yn
i¼1

yiðtiÞi ð1Þ

In practice, time is discretized into increments of size Dt, and spike trains are binned. Equation 1 is recovered from its discrete counterpart in the limit

Dt ! 0. If the spike trains are stationary (their statistics do not change over time) we can replace averages over trials with averages over time. The

correlation in this case only depends on the time lag in between spikes:

mi;j;...;nðsj ; . . . ; snÞ ¼ 1

T

Z T

0

dti yiðtiÞ
Yn
j¼iþ1

yjðti þ sjÞ ð2Þ

where sj = tj � ti for j = i + 1, . . . , n. The correlation function measures the frequency of spike pairs. Two uncorrelated Poisson processes with rates

ri and rj have mij(s) = rirj, independent of the time lag s. The statistics of any linear functional of the spike trains (such as output spike counts, or

synaptic outputs or inputs) can be derived from these spike train statistics [16��,26��].

The joint moments of the spike trains in a population also determine the variability and temporal correlations of the population-averaged activity,

yðtÞ ¼ 1
N

PN
i¼1 yiðtÞ. The average over the population can be interchanged with the average over trials and product over neurons in Equation 1 so

that a mth order moment of the population activity, y, is given by:

mðti ; . . . ; tmÞ ¼ 1

Nm

X
1�j1 ;...;jm�N

mj1 ;...;jm ðti; . . . ; tmÞ

Even weak correlations in m can give rise to strong population fluctuations (Panel A).

Finally, moments mix interactions of different orders. To account for lower-order contributions, we can define cumulants of the spike trains. The

first cumulant and the first moment both equal the instantaneous firing rate. The second cumulant is the covariance function of the spike train:

Cij(s) = mij(s) � rirj. The third spike train cumulant similarly measures the frequency of triplets of spikes, above what could be expected by

composing those triplets of individual spikes and pairwise covariances. Higher order cumulants have similar interpretations [27].
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Pairwise correlations and population variability. (a) Variability of the population-averaged activity in 200 uncoupled integrate-and-fire neurons

receiving white noise inputs with different strengths of spatial input correlation. (b) Cross-covariance of two neurons’ spike trains in a feed-forward

microcircuit with two excitatory (cell 2,3) and one inhibitory (cell 1) neurons. Top: simulation of (black) versus linear response theory (blue; Equation

6). Bottom: contribution of different length paths through the microcircuit (Equation 8). Adapted from [38�].
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