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Across the nervous system, neurons often encode circular

stimuli using tuning curves that are not sine or cosine functions,

but that belong to the richer class of von Mises functions, which

are periodic variants of Gaussians. For a population of neurons

encoding a single circular variable with such canonical tuning

curves, computing a simple population vector is the optimal

read-out of the most likely stimulus. We argue that the

advantages of population vector read-outs are so compelling

that even the neural representation of the outside world’s flat

Euclidean geometry is curled up into a torus (a circle times a

circle), creating the hexagonal activity patterns of mammalian

grid cells. Here, the circular scale is not set a priori, so the

nervous system can use multiple scales and gain fields to

overcome the ambiguity inherent in periodic representations of

linear variables. We review the experimental evidence for this

framework and discuss its testable predictions and

generalizations to more abstract grid-like neural

representations.

Addresses
1Bernstein Center for Computational Neuroscience Munich and Faculty

of Biology, Ludwig-Maximilians-Universität München,

Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
2Department of Molecular and Cellular Biology and Center for Brain

Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138,

USA
3Werner Reichardt Centre for Integrative Neuroscience and Institute for

Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
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Introduction
Angular variables are of key importance for sensory and

motor systems — they describe the rotation of a rigid

body part around a joint, the orientation of a visual

stimulus projected onto the retina, or one’s own

movement direction relative to some external landmark.

Reflecting the periodic nature of angular variables, their

neural representation is periodic, too. However, periodic

tuning curves may also result from the way neural

responses are measured. For instance, the oriented

receptive field of a neuron in visual cortex is reduced

to a periodic tuning curve when the cell’s response is

measured as a function of angle. More surprisingly,

though, the nervous system uses periodic representations

for spatial navigation [1] and conceptual categorization

[2��], two tasks involving variables that are not periodic in

nature. The observed grid-like codes are fascinating, but

what are their representational and computational

merits?

The ambiguity inherent to any periodic representation of

non-periodic variables, such as spatial position, confounds

decoding at the single-neuron level — if multiple posi-

tions are mapped onto the same value of the internal

coding variable, there is simply no way to recover the one

true position. The same holds for ‘mixed’ neural repre-

sentations of cognitive task variables [3,4]. Here, several

stimulus attributes or even multimodal inputs drive the

same measure of the neuronal response, such as the firing

rate. Mixed selectivity stands in contrast to the concept of

multiplexing, in which a neuron might represent the

intensity of a visual stimulus in the firing rate, and another

stimulus attribute, such as the stimulus orientation, in the

latency of the response.

At the population level, representations of neurons with

mixed selectivity can be read out linearly and efficiently:

although every neuron carries ambiguous information,

different neurons encode different stimulus combinations

so that each individual stimulus triggers a unique popu-

lation-level response [3–5]. Similarly, the non-uniqueness

of grid codes at the single-grid scale might be resolved by

pooling information across multiple scales. As we will

argue in this review, simple readouts of grid codes based

on canonical tuning curves are indeed possible. Key

ingredients are two mechanisms long known from motor

and sensory neuroscience: population-vector decoding [6]

and gain modulation [7].

Decoding circular variables in one dimension
Because of noise intrinsic to the nervous system, neurons

never respond the same way twice [8–10]. Accordingly,

the population response n = (n1, n2, ..., nN) of an ensemble

of N neurons is statistical in nature. It occurs with a
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likelihood P(njx) — the conditional probability of the

response n given the input x, which might describe motor

actions or sensory signals. Optimal neural inference con-

sists of computing the most likely input from the noisy

response, i.e., the ‘maximum likelihood estimate’ xML. As

P(njx) depends on the neural firing statistics and tuning

curves, determining xML requires elaborate calculation.

The challenge for down-stream neurons (and external

observers) is even more demanding: to infer the input x
solely from the noisy population response n. Here, the

observer or down-stream neural system need to maximize

the posterior probability P(xjn) over all possible x-values
for given n so as to obtain the ‘maximum a posteriori
estimate’ xMAP. It is a question of debate how neural

systems solve this fundamental challenge [11–14].

For continuous circular variables, on the other hand, there

exists an intuitive stimulus estimate, the population

vector (PV), which weighs the response of each neuron

by its preferred stimulus direction x (Box 1 and

Figure 2e). First proposed as a coding mechanism for

motor cortex, the PV is linear, robust and computable by a

linear network [11,15–17]. Yet the PV remains controver-

sial, even for motor cortex, as it is ill-suited to describe the

time-varying kinematics of motor actions [18] and is quite

sensitive to the uniformity of the distribution of preferred

directions [19] and to the nature of noise correlations in

the population [20]. The consensus view holds that PV

decoding might be ‘good enough’, but rarely perfect

[12,13,21,22�]. In fact, for a population with cosine or

various other unimodal tuning curves and Poisson spike

statistics, the PV is strictly suboptimal.

Surprisingly, though, there are canonical tuning curves

and conditions under which the PV is the optimal decoder

for Poisson statistics [23]. These canonical tuning curves

are von Mises functions, which are exponentials of a

sinusoid (see Box 1). Compared to sine or cosine func-

tions, von Mises functions have an additional parameter

that controls the tuning width. Figure 1 shows typical von

Mises fits for orientation tuning in V1 [24], head-direction

tuning in the anterior thalamic nucleus [25,26], reaching

direction in motor cortex [27], and one-dimensional slices

through 2D spatial firing fields of grid cells in medial

entorhinal cortex [28]. These data and quantitative anal-

yses, e.g., [27], suggest that, apart from their theoretical

appeal, von Mises functions readily capture the essence of

circular tuning in many cases.

In addition, von Mises functions are highly appealing from

a theoretical point of view: For statistically independent

Poisson neurons with von Mises tuning (see Box 1 for

detailed mathematical definitions), one finds [23] that

(1) the most likely stimulus can be directly read out from

the PV, xML = xPV,

(2) the uncertainty in xML is given by the inverse PV

length,

(3) the likelihood P(njx) is von Mises, too, and uniquely

fixed by PV length and direction,

(4) the expected PV length equals the average Fisher

information, up to a fixed constant.

If the prior stimulus distribution P(x) is flat, then Bayes’

rule states that the posterior probability P(xjn) � P(njx).
In this case, the prediction for the maximum a posteriori
probability stimulus xMAP is identical to the maximum

likelihood stimulus xML so that the first two results apply

to xMAP, too, and similarly the third result is also true for

P(xjn). Von Mises functions are thus not only advanta-

geous when it comes to fitting experimentally measured

circular tuning characteristics but also to improve the

interpretation of these data within a sound theoretical

framework.

Just as each neuron’s response is a random variable, so is

the PV. As such, the PV fluctuates from trial to trial, so

that the uncertainty in xML varies, too. A reliable popula-

tion response, though, could simplify downstream proces-

sing. The coefficient of variation in the Fisher informa-

tion (PV length) is smallest when the tuning curve’s

concentration parameter k (see Box 1) is around 2.5

(Figure 1e). The minimum is broad, so that values

2 < k < 5 are close to optimal (Figure 1a,c,d); these

values for k correspond to an orientation tuning width

of 30� to 50�. In contrast, maximizing the information

predicts narrower tuning widths [29,30].

Decoding linear variables in one dimension by
coiling up stimulus space
Many stimulus variables, such as the pitch of a pure

sound, the wave-length of a light source or the position

of an animal, are not circular but linear variables. Do such

stimuli require an entirely different neural representation

or could periodic population codes still be used? Figure 2

demonstrates that this is indeed possible. However, there

is a price to be paid: the many-to-one mapping (Figure 2a)

from a straight line to a circle does not have a unique

inverse mapping. The same is true in higher dimensions

(Figure 2b). To overcome this fundamental problem,

multiple periodic representations with different spatial

scales l need to be combined (Figure 2c). For PV-decod-

ing, multiple neurons are required at each scale, which

thereby predicts the existence of distinct modules. Within

one module, neuronal tuning curves must share the same

spatial period but different curves will be phase shifted

relative to each other. If no common factor exists that

would divide the different modular scales evenly, the

coding range is potentially very large [31].

Coiling up stimulus space for the sake of a periodic neural

representation may seem costly in terms of neural hard-

ware. Information theoretical analyses show, however,
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