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Synaptic plasticity is a central theme in neuroscience. A

framework of three-factor learning rules provides a powerful

abstraction, helping to navigate through the abundance of

models of synaptic plasticity. It is well-known that the

dopamine modulation of learning is related to reward, but

theoretical models predict other functional roles of the

modulatory third factor; it may encode errors for supervised

learning, summary statistics of the population activity for

unsupervised learning or attentional feedback. Specialized

structures may be needed in order to generate and propagate

third factors in the neural network.
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Introduction
Associative (Hebbian) learning indicates association

between two factors (two sensory inputs or an input

and an output), but such a learning is often influenced

by a so-called third factor. In a very general framework of

three-factor learning, plasticity is realized by changing a

synaptic strength w with the following rule

_w ¼ Fðpre; post; g; wÞ; ð1Þ

where pre and post are some functions of histories of

presynaptic and postsynaptic activities, g is a third factor

modulating the plasticity (Figure 1), and _w denotes the

time derivative of the synaptic strength w. The third

factor may represent, for example, rewards, supervised

errors, summary statistics, or attentional feedback, which

could be used to facilitate different types of learning by

providing more global information about how well the

whole network is performing or how important a current

situation is. Often learning rules are written in a more

specific form

_w ¼ gHðpre; postÞ; ð2Þ

where H is a generalized Hebbian term, which includes

some measure of correlation between presynaptic and

postsynaptic activities. As a simple example, the classical

Hebbian learning assumes a rate model of neurons,

wherein the activities are described by real valued firing

rates fpre and fpost. The Hebbian plasticity term then

simply involves a product of those firing rates (‘fire

together wire together’).

In more detailed, biologically plausible models, the activ-

ity of each neuron is approximated by a point process, that

is, it is fully determined by a set of times at which the

neuron generated action potentials (spike train). When

both pre and post are given by the spike trains of the

corresponding neurons, the learning rule based on H( pre,
post) is called spike-timing-dependent plasticity (STDP)

[1,2]. In the simplest scenario STDP is described by

pairwise interactions, that is, it depends only on the

relative timing of pairs ( pre–post) of individual spikes

[3,4]. Function H( pre, post) can be in this case determined

by the learning window (also STDP function), that is, one

dimensional function of the relative time between pre-

synaptic and postsynaptic spikes. In the standard STDP,

long-term potentiation (LTP, the connection is strength-

ened) is observed if the presynaptic spike precedes (in

some short time window) the postsynaptic spike (pre-

before-post), whereas long-term depression (LTD, the

connection is weakened) is observed if the postsynaptic

spike precedes the presynaptic spike (post-before-pre).

This temporally asymmetric STDP is an extension of the

original Hebb’s postulate and in some limits simplifies to

the classical Hebbian term ( fpre fpost). Note that Equation

2 can describe more complicated STDP rules that may

involve more than two spikes [5] or more biophysical

calcium-based plasticity rules if the calcium concentra-

tion is primarily determined by the presynaptic and

postsynaptic activity [6,7].

A possible biological implementation of the three-factor

learning is provided by neuromodulators. Multiple in vitro
experimental studies have shown that neuromodulators

modulate Hebbian plasticity in various ways. In hippo-

campus, the activation of the D1 subunit dopamine

receptor reverses LTD to LTP and extends the LTP
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part of the STDP time window [8], leading to temporally

symmetric STDP function (LTP for both pre-before-

post and post-before-pre). In contrast, the activation of

the a subunit adrenaline receptor reverses LTP to LTD

[9]. In addition, modulations of synaptic plasticity occur

with various neuromodulators, including dopamine [10],

noradrenaline [11], acetylcholine [12], and serotonin (5-

HT) during the developmental stage [13]. Another bio-

logical mechanism that can implement the three-factor

learning is inhibition. Recently, it was reported that

GABAergic inhibition directly suppresses local dendritic

Ca2+ signaling and promotes spine shrinkage and elimi-

nation of hippocampal dendritic spines [14], and such

suppression of dendritic Ca2+ is sensitive to precise

timing (<5 ms) of inhibitory input [15]. In corticostriatal

synapses, with intact physiological GABAergic transmis-

sion, the pre-before-post stimulation induces LTD,

while the post-before-pre stimulation induces LTP

[16]. However, blockade of GABAA-receptors converts

LTD into LTP, and vice versa [17]. In addition, glial

cells may also modulate and coordinate Hebbian plas-

ticity [18].

In this manner, the third factor modulates the original

associative learning in various ways, which must play roles

in different brain functions. Note that the multiplicative

relationship between the third factor and the Hebbian

term in Equation 2 is a useful mathematical simplifica-

tion. The biological third factors described above can, in

addition, directly modulate the presynaptic or postsynap-

tic activities. In the rest of the paper we list some of the

hypothetical roles of the third factor proposed in the

theoretical literature, as well as possible computational

mechanisms of their generation and propagation.

Although many of these functions were proposed based

on theoretical considerations, the underlying algorithms
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A schematic image of modulations of Hebbian plasticity by third factors.
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