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Recent studies show that small movements of the eye that

occur during fixation are controlled in the brain by similar neural

mechanisms as large eye movements. Information theory has

been successful in explaining many properties of large eye

movements. Could it also help us understand the smaller eye

movements that are much more difficult to study

experimentally? Here I describe new predictions for how small

amplitude fixational eye movements should be modulated by

visual context in order to improve visual perception. In

particular, the amplitude of fixational eye movements is

predicted to differ when localizing edges defined by changes in

texture or luminance.
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Impressionist paintings serve to illustrate the point that

visual forms can be defined by changes in textures as well

as by changes in brightness [1��,2–5] (see Figure 1 for an

example). Recent studies have invigorated the debate in

visual neuroscience as to whether form or texture are the

primary drivers for visual perception [6,7��,8]. For exam-

ple, often shapes defined by textures are perceived more

readily than those based on outlines [8]. However, tex-

tures themselves are determined by conjunctions of local

shape elements, such as the predominance of signals at

some orientation or conjunctions of edges [9]. Further-

more, cartoons illustrate that we can perceive shapes

based on their outlines alone, without any textural infor-

mation. Thus, both mechanisms work in parallel to allow

for visual perception. In the primary visual cortex (V1),

neural responses are tuned to specific combinations of

angles at specific positions. Presumably this explains why

V1 neurons are better at discriminating individual sam-

ples with a shared texture than different texture types

from each other [7��]. This situation changes in the

secondary visual cortex (V2) where neurons trade the

ability to distinguish individual samples for their ability

to distinguish between different texture types [6,7��].
This review will first discuss recent results on the neural

mechanisms for detecting edges defined in changes in

luminance or texture. Then, we will discuss how differ-

ences in neural mechanisms translate into different pre-

dictions for optimal eye movements based on information

theory.

Neural mechanisms for detecting edges
defined by textures
Because textures are defined as patterns with position-

invariant statistical properties [10], the responses of neu-

rons tuned to textures are often analyzed using multi-

stage models that combine position-invariance with selec-

tive tuning to conjunctions of edges of different angles

[1��,2–5,11,12] (Figure 2). Analyses of V2 responses to

natural stimuli using such models have yielded three

organizing principles for their feature-selectivity [11].

First, the responses of V2 neurons are based on con-

junctions of multiple edges at nearby positions. The

selectivity to this preferred pattern is strengthened

through the cross-orientation suppression where excit-

atory edge patterns are paired with suppressive  edges of

approximately orthogonal orientation [11]. Second,

there is position invariance in at least two different

space scales: at the level of individual edges that locally

form the so-called quadrature pairs [13,14], and with

respect to position invariance of the whole relevant

pattern. This latter type of more global position invari-

ance is the one that would be the most relevant for

mediating texture selectivity. Importantly, some V2

neurons used biphasic pooling masks that can be used

to detect edges defined by changes in textural charac-

teristics across the boundary. The pooling masks of

V2 neurons are computationally equivalent to the recep-

tive fields of V1 neurons applied to luminance gratings

(see Figure 3 for an example). These three properties —

cross-orientation suppression, local position invariance

through quadrature pairing, and combinations of

biphasic/monophasic pooling masks were observed for

each of the sub-populations of V2 neurons that were

previously identified based on the diversity of their

preferred orientation patterns and temporal character-

istics [11,15–18]. Thus, V2 neurons have the abilities to

signal the presence of different types of textures and

to detect edges defined by changes in texture, using

similar computational principles that have been applied

to V1 responses to decode position of luminance-defined

edges.
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Figure 1
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(a) Example image with boundaries defined by either changes in luminance or textures. (b) A set of relevant edge features for an example V2

neuron. Data from [18] re-analyzed using the three-stage position-invariant model [11] (see also Figure 2). This neuron ‘e0043’ was identified as

belonging to the sub-population with relatively homogeneous feature selectivity across space. Blue and red denote excitatory and suppressive

features, respectively; opacity is proportional to the weight with which this feature affects the neural spike probability. (c) Example V2 neuron

(‘e109’) from the sub-population with heterogeneous tuning across space.
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(a) A three-stage model for characterizing responses of neurons selective to textures. The model incorporates selectivity for multiple excitatory

and suppressive components at each position. This operation is repeated across space (red, green, and blue channels). Within each channel, the

stimulus patch is projected onto a set of relevant features (same for all patches and shown here as heat maps) to which we refer as first-order

features. The output of a projection onto a given feature is passed through a quadratic function (with a potentially non-zero linear term) [1��].
These outputs are summed and passed through a compressive nonlinearity. This part of the model is designed to describe heterogeneous center-

surround interactions, because the number of features and their spatial arrangement is not pre-specified and includes both excitatory and

suppressive features (marked with + and � near the arrows in the schematic of the block). The output of each quadratic block within each patch

is summed, with weights that could be either positive or negative, and the result passed through a soft threshold function to yield a prediction for

the firing rate. The block output filtering allows one to connect with filter-rectify-filter (FRF) models [1��,3,4,41–44]. (b) Left: Prototypical

arrangement of features in the FRF model. Each ellipse denotes a Gabor feature, excitatory (blue) and suppressive (red). Right: equivalent

representation in the composite model with a single first-stage filter (blue contour) and a broader block-output filter (dashed line) that includes

both positive (+) and negative (�) weights. (c) Left: Arrangement of features that can model selectivity to a texture boundary or selectivity to pairs

of orientation in the presence of position invariance. Right: Equivalent representation in the composite model with two first-stage filters (blue

contours) and an approximately uniform block output filter (denoted by the dashed line). (d) Left: Generalization of a FRF model from B that

includes cross-orientation suppression between features. The equivalent representation in terms of the composite model has two first stage filters

(excitatory in blue and suppressive in red) followed by a biphasic block output filter (dashed line).
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