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Learning and memory theories consider sleep and the

reactivation of waking hippocampal neural patterns to be crucial

for the long-term consolidation of memories. Here we propose

that precisely coordinated representations across brain regions

allow the inference and evaluation of causal relationships to train

an internal generative model of the world. This training starts

during wakefulness and strongly benefits from sleep because its

recurring nested oscillations may reflect compositional

operations that facilitate a hierarchical processing of

information, potentially including behavioral policy evaluations.

This suggests that an important function of sleep activity is to

provide conditions conducive to general inference, prediction

and insight, which contribute to a more robust internal model

that underlies generalization and adaptive behavior.
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Introduction
The challenge faced by the brain in perceiving and

interpreting the external world is to map a high-dimen-

sional input into neural representations in the form of

distributed spiking activity across brain regions, and to

then infer causal relationships behind this sensory-driven

code. A consequence of this inference is the generation of

actions that allow an optimal interaction with the envi-

ronment in different contexts. Computationally, the com-

plexity of this challenge renders solutions that rely on

discriminative methods and lookup tables as rigid and

inefficient. Instead, solutions based on probabilistic gen-

erative models aim to learn the underlying rules behind

external world observations, allowing more general appli-

cability [1,2]. For instance, in the case of spatial explora-

tion, using a lookup table constructed on past navigational

experiences, subjects would rely on trial and error

exploration to discover different courses when familiar

routes are not accessible. By contrast, using a map as a

model, subjects could gain in generalization and flexibil-

ity because they would be able to devise, evaluate and

plan alternative routes without previously having experi-

enced them, as predicted by the cognitive map hypothe-

sis [3,4]. Importantly, knowledge of the spatial layout can

have limited value when planning and executing a plan,

because a map does not consider conditions and rules that

may govern navigation in a given environment. Answer-

ing questions such as what paths are available and why

they are accessible or not is necessary for an individual to

decide how to execute a plan to reach a goal. Hence,

incorporating information to answer these what, why and

how questions can lead to a more robust model that

generates appropriate actions under varying requirements

and contexts. Training such a generative model relies on

extracting meaningful structure from its inputs to learn

statistical representations that can account for the broad

set of conditions associated with them [5��]. For neural

systems this training could start with the encoding of

external information during awake behavior and continue

during periods of sleep, resulting in more robust repre-

sentations that increase behavioral flexibility [6]. Indeed,

several studies demonstrate that sleep, in addition to

promoting memory consolidation, enables the discovery

of implicit rules and insights, which are essential ele-

ments for generalization and learning [7]. What compu-

tational principles are at work during sleep to facilitate the

consolidation of memories while also promoting generali-

zation as well as the inference of causal relationships?

While a dialogue between the neocortex and hippocam-

pus has been thought to mediate the systems consolida-

tion of memory and the slow incorporation of statistical

regularities into general cortical schemas [8��,9,10], it is

unclear whether or how it could also contribute to the

training of a generative model that infers causal relation-

ships. In the following sections, we explore the idea that,

in the case of spatial navigation, the coordinated neural

representations in the hippocampus, neocortex and thal-

amus during sleep, train a generative model that infers

contextual and spatial contingencies, and which can be

used during navigation to flexibly select actions to meet

contextual conditions.

Predictive coding and neural network
representations
Machine learning methods can provide helpful theoreti-

cal frameworks for the implementation and training of

flexible generative models in the brain. Although deep

Available online at www.sciencedirect.com

ScienceDirect

www.sciencedirect.com Current Opinion in Neurobiology 2017, 44:193–201

mailto:mwilson@mit.edu
http://www.sciencedirect.com/science/journal/09594388/44
http://dx.doi.org/10.1016/j.conb.2017.05.020
http://dx.doi.org/10.1016/j.conb.2017.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2017.05.009&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


architectures have enjoyed a recent wave of success

[11,12], they largely require explicit external feedback

during training, which contrasts with how the brain learns

despite the lack of external feedback. Generative net-

works, by contrast, while typically not structurally deep,

can extract statistical patterns in an unsupervised manner

[13]. These types of models cast the brain as an inference

device that compares predictions generated by an internal

model of the world against the ongoing spike train code.

Perception, for example, is then a constructive process by

which the brain continuously tries to account for its

sensations in terms of internally generated expectations

or, when a mismatch occurs, updates the model that

generates the predictions [14��,15�]. Stochastic recurrent

neural networks offer a formal implementation that is

consistent with this type of predictive coding because

they allow the sequential estimation of probabilistic

relationships between time-dependent random variables

through generative models. The temporal restricted

Boltzmann machine (TRBM) [16�,17], a forerunner to

modern recurrent neural networks, offers an intuition of

how this process unfolds. The TRBM is composed of a

sequence of individual RBMs [18] (Box 1) each of which

contains two sets of stochastic binary units. A layer of

visible units receives the input to the RBM and is linked

to a set of hidden units through connection weights in

such a way that the state of the units and the strength

of their connections can, through training, extract and

encode the statistical regularities of the inputs. Using this

computational design as a conceptual framework, even

without a specific correspondence with detailed brain

anatomy, can provide insights about how neocortical,

hippocampal and thalamic networks act together to

implement and train a generative model of the world

that could be used for flexible behavior. For example,

during goal-directed navigation, a subject would benefit

from knowing the upcoming spatial layout of the envi-

ronment and the rules affecting potential choices. In

rodents, the spatial component is given by the anticipa-

tory firing of CA1 place cells within cycles of the ongoing

theta rhythm (8–12 Hz) in which place cells with partially

overlapping receptive fields fire in a temporal sequence

that reflects their relative position on the maze [19,20].

These theta sequences represent the upcoming position

of the animal and, at decision points, reveal sweeps in the

direction of all available options, consistent with an

active, constructive evaluation of potential choices [21].

Neocortical areas, including prefrontal and retrosplenial

cortices, could represent the rules and actions that ulti-

mately impact the decision of the subject [22–24]. Con-

sistent with this cooperative interaction, prefrontal neu-

rons are selectively phased locked to the hippocampal

theta rhythm as subjects approach decision points [25,26].

An additional structure that could assist in coordinating

consistent expectations and representations across brain

areas is the thalamus, given its role in the expression of

intended navigational trajectories in prefrontal cortex and

hippocampus [27], its projections to multiple neocortical

regions and its potential role in modulating the hippo-

campal theta oscillation [28,29]. How is this complex

network, involving multiple brain regions, trained to

support predictive coding?

Training a generative model during awake
behavior
Predictive coding relies on correcting errors resulting

from comparisons between internal predictions and actual

observations. This error, estimated through a process
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Box 1 Restricted Boltzmann Machine as a computational model for learning across brain states

The stochastic nature of RBMs allows the estimation of the statistical structure implicit in its inputs in an unsupervised way mimicking the challenge

faced by the brain in interpreting the outside world. (a) In the RBM formulation, a set of binary visible units interacts directly with incoming stimuli

and is linked to a set of binary hidden units; the state of the units and the strength of their connections, represented in a connection matrix, can

encode statistical regularities of the input [49]. Computationally, this requires a two-step optimization heuristic known as contrastive divergence: in

the first (encoding) step, the visible units are fixed to represent a sample of the external input and the state of the hidden units is obtained and

expressed as a hidden vector; in the second (prediction) step, the hidden units are clamped to the recently obtained hidden vector to generate a

prediction quantified by casting the value of the visible units into a visible vector. The difference between the joint state of visible and hidden units

during the encoding and predictive steps provides an update to the connection matrix so that the internal model better approximates the training

sample [29]. Intuitively, the weight between two coactive units will increase in the encoding step, similar to a Hebbian rule, to encourage the hidden

units to model the incoming stimulus, whereas the weight between coactive units in the prediction step will decrease to minimize nonspecific

correlations. The temporal RBM (TRBM, (b) top) is an extension of the RBM that is useful in representing sequential data. At each time step, an

RBM corrects its prediction based on the ongoing sample of the external stimulus, and it provides the initial conditions for the hidden units in the

immediately following time step. Physiologically, this could correspond to the encoding and retrieval phases associated with the hippocampal theta

oscillation; in a given theta cycle, the state of the environment would be communicated through the feedforward connections from entorhinal cortex

(EC), allowing for a contrastive divergence-like operation by the recurrent CA3 network, while the expectation of the model, in the retrieval phase,

would be reflected by CA1 spiking activity. As an outcome, this process would set up the next expectation of the internal model as navigation

unfolds.

The recurrent TRBM (RTRBM, (b) bottom) provides a mathematical advantage over the TRBM because, at any given time step, the state of the

hidden units is obtained by a deterministic operation based on the state of an intermediary hidden layer (H’) at the previous time step along with the

current state of the visible layer. Although mapping the exact equivalence between each component of the RTRBM to physiological elements is

difficult, the temporal progression of the RTRBM suggests an analogy to the coordinated activity of the hippocampus and neocortex during sleep.

Specifically, the notion that temporally coincident reactivation events in both areas, analogous to the state of the intermediary hidden and visible

layers at each time step, can be used to infer statistical regularities in their representations that are incorporated into a generative model
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