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h  i  g  h  l  i g  h  t  s

• A  new  method  for  fully  automated  identification  and  segmentation  of  human  myelinated  nerve  fibers  in  a  cross-sectional  optical-microscopic  image
was proposed.

• It used  a deep learning  model  of a convolutional  neural  network.
• The  results  of accuracy  evaluation  were  promising  in  comparison  with  previously  reported  automated  methods.
• By  training  the  model  with  more  sample  data,  higher  performance  can  be achieved  than  it is.
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a  b  s  t  r  a  c  t

Background:  The  morphometric  analysis  of  myelinated  nerve  fibers  of peripheral  nerves  in  cross-sectional
optical  microscopic  images  is  valuable.  Several  automated  methods  for nerve  fiber  identification  and
segmentation  have  been  reported.  This  paper  presents  a new  method  that  uses  a deep  learning  model  of
a convolutional  neural  network  (CNN).  We  tested  it for human  sural  nerve  biopsy  images.
Methods:  The  method  comprises  four  steps:  normalization,  clustering  segmentation,  myelinated  nerve
fiber  identification,  and  clump  splitting.  A normalized  sample  image  was  separated  into  individual  objects
with  clustering  segmentation.  Each  object  was  applied  to a CNN deep learning  model  that  labeled  myeli-
nated  nerve  fibers  as  positive  and  other  structures  as negative.  Only  positives  proceeded  to  the  next
step.  For  pretraining  the  model,  70,000  positive  and  negative  data  each  from  39  samples  were  used.  The
accuracy  of the proposed  algorithm  was  evaluated  using  10 samples  that  were  not  part  of  the  training
set.  A  P-value  of  <0.05  was  considered  statistically  significant.
Results:  The  total  true-positive  rate  (TPR)  for the detection  of  myelinated  fibers  was  0.982,  and  the  total
false-positive  rate  was  0.016.  The  defined  total  area  similarity  (AS)  and  area  overlap  error  of  segmented
myelin  sheaths  were  0.967  and  0.068,  respectively.  In  all but one  sample,  there  were  no  significant
differences  in  estimated  morphometric  parameters  obtained  from  our  method  and  manual  segmentation.
Comparison  with  existing  methods:  The  TPR and  AS were  higher  than  those  obtained  using  previous
methods.
Conclusions:  High-performance  automated  identification  and  segmentation  of  myelinated  nerve  fibers
were  achieved  using  a deep  learning  model.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Morphometric analysis of myelinated nerve fibers of peripheral
nerves in a trans-sectional optical microscopic image is valuable in
research and clinical settings. In a clinical setting, the analysis can
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used to evaluate the severity of damage and to infer the underly-
ing pathophysiology of peripheral neuropathies (Said, 2002). The
distribution of the diameters of myelinated nerve fibers is a sig-
nificant indicator of nerve degeneration; thus, measurements of
the density distribution are routinely taken from biopsy images. A
healthy nerve exhibits bimodal distribution, with peaks at 3–6 �m
(i.e., small fibers) and 9–13 �m (i.e., large fibers) (O’Sullivan and
Swallow, 1968). In contrast, some neuropathies have characteristic
pathological features in their distribution patterns. For example,
in some kinds of familial amyloid polyneuropathies, the number
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of small fibers decreases from the early stage of illness, whereas
large fibers are comparatively preserved. They cannot be diag-
nosed by the evaluation of the density distribution alone, but it
can assist with the diagnosis (Koike et al., 2004). Morphometric
analysis has been widely performed in research studies to evalu-
ate physiological and morphological changes during aging Ceballos
et al. (1999), regeneration Schröder (1972), and responses to outer
stresses (Mackinnon et al., 1984). Moreover, it has been used to
investigate peripheral nerve changes in animal models of diseases
(Oliveira et al., 2013; da Silva et al., 2016).

The manual detection and measurement of myelinated nerve
fibers are labor intensive and time consuming because each sample
is typically composed of hundreds of nerve fibers. Thus, several
semiautomated (Silva da et al., 2007; More et al., 2011; Isaacs et al.,
2014) and automated (Campadelli et al., 1999; Romero et al., 2000;
Wang et al., 2012; Novas et al., 2013; Novas et al., 2016) methods
for nerve fiber identification and segmentation have been proposed
to facilitate this process. Here we define a semiautomated method
that requires any manual operation, for example, manually setting
up parameters or manipulating software. The number (or density)
and diameters of myelin sheaths and myelinated nerve axons are
commonly measured parameters; thus, the goal of semiautomated
and automated methods is to essentially provide the segmentation
of each myelin sheath in sample images. Most current automated
methods are designed for the (1) identification and segmentation
of candidate objects and (2) elimination of false positives (FPs) in
accordance with prespecified criteria.

To automate the identification and segmentation processes,
clustering algorithms (Campadelli et al., 1999; Wang et al., 2012;
Novas et al., 2016), gray level thresholding (Romero et al., 2000),
and watershed transform (Wang et al., 2012) have been utilized.
Furthermore, active contour models and Hough transform have
been used in the field of nerve cell segmentation of a brain specimen
(Fok et al., 1996). Although FPs can be eliminated later, accurate seg-
mentation is desirable to generate as few FPs as possible. A recently

proposed method (Novas et al., 2016) used competitive learning
(Uchiyama and Arbib, 1994), which is a clustering algorithm, to
segment candidate areas of myelinated nerve fibers. Clustering on
pixel intensities was  conducted, and pixels of the darkest clus-
ter were extracted as target areas. Although this method exhibits
high-performance segmentation of the laryngeal nerves of rats,
the optimal number of clusters is not predetermined and thus
needs to be determined for each evaluation. This disadvantage
becomes more obvious when the method is applied to human clini-
cal samples because in such samples, the density of nerve fibers can
decrease to various degrees, leading to difference in color distribu-
tions among samples. Different color distributions require different
optimal numbers of clusters (Fig. 1).

As misidentification in the above processes is inevitable, accu-
rate and robust systems for recognizing true positives (TPs; i.e.,
myelinated nerve fibers) and eliminating FPs are required. Previ-
ous methods used rule-based criteria based on myelinated nerve
fiber features, which included nerve size (Campadelli et al., 1999;
Romero et al., 2000; Novas et al., 2016), ratio of d/D (Campadelli
et al., 1999; Romero et al., 2000), circularity (Campadelli et al., 1999;
Romero et al., 2000; Wang et al., 2012), and existence of a hole
(Campadelli et al., 1999; Romero et al., 2000). Despite these efforts,
errors are still made due to variabilities in myelinated nerve fiber
shapes and other structures such as unmyelinated nerve fibers,
Schwann cells, myelin ovoids, and parts of connective tissues. The
highest TP rate (TPR) in previous methods was  not more than 96%
(Wang et al., 2012). Furthermore, accurate judgment is assumed
to be more difficult in human biopsied samples of neuropathies
than in animal samples because there can be various types of
deformed nerve fibers. Finally, the number of some structures, such
as Schwann cells, often increases due to pathological processes
(Behse et al., 1975).

Until recently, image recognition has mainly depended on rule-
based algorithms, including the above-mentioned methods. Such
rules are generated from observed patterns and features. How-

Fig. 1. Segmentation using competitive learning of three clusters: (A) an example of myelinated nerve fibers of normal density; (B) the pixels of the darkest cluster in (A)
are  extracted. (C) An example of severe neuronal loss, and (D) the pixels of the darkest cluster in (C) are extracted. In a sample with severe neuronal loss, three clusters are
inadequate to extract only myelin sheaths due to differences in color distribution.
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