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h  i g  h  l  i g  h  t  s

• An elastic  net-based  (EN)  parcellation  method  is introduced  for  fMRI  data.
• Performance  evaluated  using  simulation  datasets  and  resting-state  fMRI datasets.
• The  proposed  EN-based  method  achieved  higher  accuracy  than  LASSO-based  method.
• No  functional  volumetric  differences  in  insular  subdivisions  between  MDD  and HVs.
• Patients  showed  hypo-connectivity  in  medial  temporal  region  with  insular  subdivision.
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a  b  s  t  r  a  c  t

Background:  Parcellating  brain  regions  into  functionally  homogeneous  subdivisions  is  critical  for  under-
standing  normal  and  abnormal  brain  functions.
New method:  In this  study,  we developed  a  new  sparse  representation-based  parcellation  method  for
functional  magnetic  resonance  imaging  (fMRI)  data,  and  applied  the  new  method  to investigate  func-
tional  insular  subdivisions  in  treatment-resistant  major  depressive  disorder  (MDD).  Realistic  simulations
were  implemented  to  demonstrate  the  feasibility  of  the  method.  Subsequently,  the  method  was  used to
parcellate  the  insula  in  a sample  of fifty-six  MDD  patients  and thirty-six  healthy  volunteers  (HVs).  The
optimal  number  of clusters  was  determined  by  an independent  test-retest  dataset.  Finally,  differences  of
the  functional  connectivity  profiles  of each  insular  subdivision  between  patients  and  HVs were  inspected.
Results:  The  results  from  both  simulated  and  test-retest  fMRI  datasets  demonstrated  the  feasibility  of
the proposed  elastic  net-based  (EN)  method.  With  the  proposed  method,  the  insula  was  parcellated
into  four  subdivisions  (dorsal  anterior  dAI;  ventral  anterior  vAI; middle,  MI  and  posterior,  PI).  Whereas
patients  showed  hypo-connectivity  between  vAI  and  right  medial  temporal  lobe,  there  were  no  functional
volumetric  differences  in insular  subdivisions  between  MDD patients  and  HVs.
Comparison  with  existing  method:  Results  from  both  simulated  and real fMRI  datasets  showed  that  the
proposed  EN  method  achieved  higher  accuracy  than  least  absolute  shrinkage  and  selection  operator-
based  (LASSO)  method.
Conclusions:  These  findings  suggest  that  EN-based  parcellation  has  the  potential  to  be a useful  addition
to  the  parcellation  techniques  for fMRI  data,  and  provide  evidence  of decreased  functional  connectivity
without  functional  volumetric  changes  of  the  insula  in  treatment-resistant  MDD.
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1. Introduction

Brain parcellation divides the brain into a set of non-overlapping
parcels that exhibit homogeneous characteristics within the par-
cel and heterogeneous characteristics between different parcels.
By doing so, one gains a deeper understanding how different brain
regions function together in perception and cognition processing
(Eickhoff et al., 2015; Yeo et al., 2011). Moreover, the parcella-
tion of the brain into distinct subdivisions provides a critical tool
for understanding the brain pathology, and it may  provide critical
insights into the neurobiological underpinnings of neuropsychi-
atric disorders such as major depressive disorder (MDD) (Downar
et al., 2014), obsessive-compulsive disorder (Dunlop et al., 2015)
and autism (Nebel et al., 2014; Yamada et al., 2016). Human brain
parcellation has been constructed using anatomical features, how-
ever, these studies were mainly based on post-mortem brains
(Garey, 1994), which are different from in-vivo brains, or struc-
tural images (Cammoun et al., 2012; Fischl et al., 2004), which did
not take account of the functional properties of the human brain.
The results obtained by these modalities can hardly transferred
to infer the function of the brain regions, since there is a limited
correspondence between anatomical boundaries and those based
on functional specialization of the brain. As a result, functional
parcellation techniques have recently gained research momentum
(Eickhoff et al., 2015). The advances of resting-state functional
magnetic resonance imaging (fMRI) technique pave an avenue for
delineating the brain’s functional properties noninvasively. As par-
cellation of brain regions using resting-state fMRI data can be posed
as a data clustering problem, several parcellation frameworks based
on various clustering algorithms have been proposed for resting-
state fMRI data (Eickhoff et al., 2015; Thirion et al., 2014).

Inspired by the success of using sparse representation for signal
and pattern analysis in the machine learning and pattern recogni-
tion fields (Wright et al., 2010), sparse representation has been used
to help decode the functions of the human brain (Li et al., 2014) by
analyzing spontaneous blood oxygenation level-dependent (BOLD)
fluctuations of brain activity measured with fMRI. However, these
studies mainly focused on inferring brain networks with sparse rep-
resentation methods (Ge et al., 2016, 2015; Lv et al., 2015; Yu et al.,
2017). It has also been proposed that sparse representation could
be used for clustering with high-dimensional datasets (Elhamifar
and Vidal, 2009, 2013). To the best of our knowledge, only two
studies (Zhang et al., 2015, 2016) have investigated the feasibility
of applying sparse representation to functional brain parcellation.
These studies took advantage of the merit of robustness to noise of
the sparse representation methods, and introduced two promising
approaches to partition brain areas by the least absolute shrinkage
and selection operator (LASSO) algorithm (Tibshirani, 2011). The
employment of a sparse representation method was  reasonable
because the representation coefficients were intrinsically sparse:
voxels within a particular area were highly correlated due to the
functional communications (De Luca et al., 2006) between these
voxels and/or spatial smoothing, averaging effect of BOLD signals;
thus one voxel could be effectively represented by a small por-
tion of voxels which were highly correlated with themselves and,
accordingly, the representation coefficients were sparse. Although
LASSO-based method exhibited better performance over other
commonly used methods, it has limitations. One limitation is intrin-
sic to the LASSO technique (Zou and Hastie, 2005). The scenario
is that if there is a group of variables (voxels) among which the
pairwise correlations are very high, LASSO tends to select only one
variable from the group and enforce coefficients corresponding to
other voxels to be zero. For fMRI data at conventional voxel sizes
and field strengths, a typical brain area usually has hundreds of
voxels and, for those voxels sharing similar functions, the correla-
tions between them can be high. The ideal sparse representation

method should be able to eliminate the trivial voxels and select the
related grouping voxels. LASSO lacks the ability to reveal the group-
ing information, and is therefore not an ideal method. The elastic
net (EN) method follows a similar formulation as the LASSO with
an additional penalty term to encourage variable grouping and a
more stable solution (Zou and Hastie, 2005). Consequently, the EN
should have better performance than LASSO in partitioning brain
areas into functional distinct subdivisions.

Recent advances in fMRI-based parcellation methods have led to
the detailed examination of the functional architecture of specific
brain regions. Among these regions, the insula has been of particu-
lar interest, as it is involved in diverse brain functions, including
cognition, emotion, and sensory perception (Kurth et al., 2010).
In spite of several studies functionally parcellating the insula, the
question of whether there exist differences in insular functional
architecture in psychiatric disorders remains to be addressed. Fur-
thermore, there exist no work on insular functional architecture in
treatment-resistant MDD  specifically. The insular cortex is increas-
ingly conceptualized as a limbic integration cortex abundantly
and reciprocally with limbic structures such as the hippocam-
pus, the amygdala, and the cingulate cortex (Augustine, 1996). In
light of increasing evidence about the involvement of insular cor-
tex in the pathophysiology of MDD  (Sliz and Hayley, 2012), we
were interested in parcellating the insula into functional subdivi-
sions, to investigate if their functional arrangement and patterns
of functional connectivity to the rest of the brain are altered in
MDD  patients. In the current study, we introduced a novel brain
parcellation method that operates by quantifying the similarity
between brain regions using the regularized sparse representation.
We  tested the feasibility of this method on simulated data and test-
retest data, and then used this data-driven method to determine if
the volumes and the functional connectivity (FC) of insular subdi-
visions differs in patients with treatment-resistant MDD  compared
with healthy volunteers (HVs).

2. Materials and methods

2.1. Parcellation framework

The time series of each voxel yi ∈ RTi, i = 1, . . .,  V (Fig. 1) within
the target region for each subject was extracted, where Ti is the
number of time points and V is the number of voxels over the tar-
get region. The sparse representation of the k-th voxel by all the
other voxels could be represented by the following EN minimiza-
tion problem:

ˇk = argmin
ˇ

∑(
yk − Xkˇ

)2 + �
[
(1 − ˛) ||ˇ||22/2 + ˛||ˇ||1

]
(1)

where yk ∈ RTi is the time series vector of k-th voxel; Xk =
[y1, . . .,  yk−1, yk+1, . . .,  yV ] ∈ RTi×(V−1) is the residual feature
matrix consisting of time series of all voxels within the target region

by eliminating the k-th voxel; ˇk =
[
ˇ1,k, . . .,  ˇj,k, . . .,  ˇ(V−1),k

]T ∈
RV−1 is the representation coefficient vector; � ≥ 0 is a complex-
ity parameter, and 0 ≤ � ≤ 1 is a compromising parameter between
the �1 and �2 constraints, where �1 constraint is defined as the �1-

norm of the coefficient vector: ||ˇk||1 =
∑

j

|ˇj,k| and �2 constraint

is defined as the square of the �2-norm of the coefficient vector:

||ˇk||22 =
∑

j

|ˇj,k|2. It should be noted that � and � together deter-

mine the trade-off between the accuracy of the linear regression,
sparsity and “grouping effect” of the coefficient vector ˇk (Zou and
Hastie, 2005). Eq. (1) would degrade as a LASSO problem with � = 1
and a conventional linear regression problem with � = 0. To solve
the EN-based minimization problem, we used the Glmnet (http://

http://web.stanford.edu/~hastie/glmnet_matlab/
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