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• A  novel  framework  for  functional
connectivity  networks  is  presented.

• A  metric  to analyse  the  hierar-
chical  complexity  of  networks  is
introduced.

• A  functional  connectivity  null  model
for complete  weighted  networks  is
introduced.

• The  null  model  attains  highest  com-
plexity when  mimicking  EEG  phase-
lag networks.

• Key  network  concepts  – integration,
regularity,  topological  randomness  –
are  refined.
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a  b  s  t r  a  c  t

Background:  Understanding  the  complex  hierarchical  topology  of  functional  brain  networks  is a key  aspect
of functional  connectivity  research.  Such  topics  are  obscured  by  the  widespread  use  of  sparse  binary
network  models  which  are  fundamentally  different  to  the  complete  weighted  networks  derived  from
functional  connectivity.
New methods:  We  introduce  two  techniques  to  probe  the  hierarchical  complexity  of  topologies.  Firstly,  a
new  metric  to measure  hierarchical  complexity;  secondly,  a Weighted  Complex  Hierarchy  (WCH)  model.
To thoroughly  evaluate  our  techniques,  we  generalise  sparse  binary  network  archetypes  to  weighted
forms  and  explore  the  main  topological  features  of brain  networks  – integration,  regularity  and  modula-
rity  –  using  curves  over  density.
Results:  By  controlling  the  parameters  of  our  model,  the highest  complexity  is  found  to arise  between
a  random  topology  and  a strict  ‘class-based’  topology.  Further,  the model  has  equivalent  complexity  to
EEG phase-lag  networks  at peak  performance.
Comparison  to  existing  methods:  Hierarchical  complexity  attains  greater  magnitude  and  range  of  differ-
ences between  different  networks  than  the  previous  commonly  used  complexity  metric  and  our WCH
model  offers  a much  broader  range  of network  topology  than  the  standard  scale-free  and  small-world
models  at  a full range  of  densities.
Conclusions:  Our  metric  and model  provide  a rigorous  characterisation  of hierarchical  complexity.  Impor-
tantly,  our  framework  shows  a scale  of  complexity  arising  between  ‘all  nodes  are  equal’  topologies  at  one
extreme  and ‘strict  class-based’  topologies  at the  other.
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1. Introduction

Graph theory is an important tool in functional connectivity
research for understanding the interdependent activity occur-
ring over multivariate brain signals (Bullmore and Sporns, 2009;
Stam, 2014; Papo et al., 2014). In this setting, Complete Weighted
Networks (CWNs) are produced from all common recording
platforms including the Electroencephalogram (EEG), the Mag-
netoencephalogram (MEG) and functional Magnetic Resonance
Imaging (fMRI), where every pair of nodes in the network share a
connection whose weight is the output of some connectivity mea-
sure. Complex hierarchical structures are known to exist in real
networks (Ravasz and Barabási, 2003), including brain networks
(Bullmore and Sporns, 2009; Meunier et al., 2010), for this reason
it is important to find methods to specifically evaluate hierarchi-
cal complexity of network topology. Here we introduce methods
specific to this end.

Complexity is understood neither to mean regularity, where
obvious patterns and repetition are evident, nor randomness,
where no pattern or repetition can be established, but attributed to
systems in which patterns are irregular and unpredictable such as
in many real world phenomena (Costa et al., 2005). Particularly, the
brain is noted to be such a complex system (Tononi et al., 1994) and
this is partly attributed to its hierarchical structure (Meunier et al.,
2010). Hierarchical complexity is thus concerned with understand-
ing how the hierarchy of the system contributes to its complexity.
Here we introduce a new metric aptly named hierarchical com-
plexity, R, which is based on targeting the structural consistency at
each hierarchical level of network topology. We  compare our met-
ric with network entropy (Solé and Valverde, 2004) and find that
we can offer a greater magnitude and density range for establishing
differences in complexity of different graph topologies.

Alongside this, we introduce the Weighted Complex Hierarchy
(WCH) model which simulates hierarchical structures of weighted
networks. This model works by modifying uniform random weights
by addition of multiples of a constant, which is essentially a
weighted preferential selection method with a highly unpre-
dictable component provided by the original random weights.
We show that it follows very similar topological characteristics
of networks formed from EEG phase-lag connectivity. Intrinsic
to our model is a strict control of weight ranges for hierarchical
levels which offers unprecedented ease, flexibility and rigour for
topological comparisons in applied settings and for simulations in
technical exploration for brain network analysis. This also provides
an unconvoluted alternative to methods which randomise connec-
tions (Watts and Strogatz, 1998; Sporns, 2006) or weights (Rubinov
and Sporns, 2011) of the original network.

Any rigorous evaluation of brain networks should address their
inherent complete weighted formulation (Fallani et al., 2014). How-
ever, the current field has largely lacked any concerted effort to
build an analytical framework specifically targeted at CWNs, pre-
ferring instead to manipulate the functional connectivity CWNs
into sparse binary form (e.g. (Sporns, 2006; Li et al., 2011; Tewarie
et al., 2015) as well as wide-spread use of the Watts-Strogatz (Watts
and Strogatz, 1998) and Albert–Barabasi (Barabasi and Albert,
1999) models) and using the pre-existing framework built around
other research areas which have different aims and strategies in
mind (Newman, 2010). In our methodological approach we pro-
pose novel generalisations of pre-existing sparse binary models to
CWN form and thus allow a full density range comparison of our
techniques. Due to the intrinsic properties of these graph types we
find minimal and maximal topologies which can help to shed light
on a wide variety of topological forms and their possible limitations
(Solé and Valverde, 2004) in a dense weighted framework.

Further, as part of our study we seek after straightforward
metrics to evaluate other main aspects of network topology for

comparisons (Solé and Valverde, 2004; Sporns, 2010) and, in this
search, found it necessary to revise key network concepts of
integration–segregation (Stam, 2014; Watts and Strogatz, 1998;
Rubinov and Sporns, 2010) and scale-freeness (Barabasi and Albert,
1999; Eguiluz et al., 2005). We provide here these revisions: (i)
That the clustering coefficient, C, is enough to analyse the scale
of integration and segregation, finding it unnecessary and con-
voluted to use the characteristic path length, L, as a measure of
its opposite, as generally accepted (Bullmore and Sporns, 2009;
Watts and Strogatz, 1998). (ii) We provide mathematical justifi-
cation that the degree variance, V, and thus network irregularity
(Snijders, 1981) is a strong indicator of the scale-free factor of a
topology.

Our study of hierarchical complexity, using a comprehensive
methodological approach, provides mathematical quantification
of the hierarchical complexity of EEG functional connectivity
networks and reveals new insights into key aspects of network
topology in general. Our model provides improved comparative
abilities for future clinical and technical research.

2. Network science: proposed methods and key revisions

We  adopt the notation in Sandryhaila and Moura (2013) so that
a graph, G(V, W), is a set of n nodes, V, connected according to an
n × n weighted adjacency matrix, W.  Entry Wij of W corresponds
to the weight of the connection from node i to node j and can
be zero. An unweighted graph is one in which connections are
distinguished only by their existence or non-existence, so that,
without loss of generality, all existing connections have weight 1
and non-existent connections have weight 0. The graph is undi-
rected if connections are symmetric, which gives symmetric W.  A
simple graph is unweighted, undirected, with no connections from
a node to itself and with no more than one connection between
any pair of nodes. This corresponds to a graph with a symmetric
binary adjacency matrix with zero diagonal. Such graphs are easy
to study and measure (Newman, 2010). The degree, ki, of node i
is defined as the number of its adjacent connections, which is the
number of non zero entries of the ith column of W.  Then, for a sim-
ple graph, ki =

∑n
j=1Wij . For a graph with 2m edges, the connection

density, P, of a graph is P = 2m/n(n − 1). A CWN  is represented by
a symmetric adjacency matrix with zero diagonal (no self-loops)
and weights, Wij ∈ [0, 1], elsewhere. To analyse CWNs it is ben-
eficial to convert it to simple form by binarising the adjacency
matrix using a threshold, where a percentage of strongest con-
nections are set to 1 and the remaining values set to 0. This stays
true to the network activity (Fallani et al., 2014) whilst reducing
computational complexity and weight issues found with weighted
metrics (Stam, 2014). Hereafter, all mathematics will refer to simple
graphs.

In this section we present the contributions of this study. We
first present the hierarchical complexity metric and the WCH
model, which are the key novel contributions of this paper.
Thereafter we detail revisions and clarification of integration and
segregation as a scale evaluated by C and scale-freeness as a factor
evaluated by V. Finally, we outline the generalisation of key net-
work archetypes to CWN  form, full details of which can be found
in the supplementary material.

2.1. Hierarchical complexity metric

The ideas of order and complexity are well known in the
discussion of networks (indeed, real world networks are often
called complex networks (Bullmore and Sporns, 2009; Papo et al.,
2014; McAuley et al., 2007)). In mathematics, the graphs stud-
ied derive from some theoretical principles. These can involve set
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