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h  i g  h  l  i  g  h  t  s

• We  consider  robust  components  as constant  over  all  possible  unknown  mechanisms.
• We  derive  a method  to incorporate  a preference  for  sparsity  in  the  mechanism.
• Improvement  in robustness  is  demonstrated  with  simulation.
• Application  to  fMRI  demonstrates  superior  accuracy  in  classifying  schizophrenia.
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a  b  s  t  r  a  c  t

Background:  Our  goal  is  to  identify  the brain  regions  most  relevant  to  mental  illness  using  neuroimag-
ing.  State  of  the  art  machine  learning  methods  commonly  suffer  from  repeatability  difficulties  in  this
application,  particularly  when  using  large  and  heterogeneous  populations  for  samples.
New  method:  We  revisit  both  dimensionality  reduction  and  sparse  modeling,  and  recast  them  in  a  common
optimization-based  framework.  This  allows  us to combine  the  benefits  of both  types  of  methods  in  an
approach  which  we  call  unambiguous  components.  We  use this  to estimate  the  image  component  with
a constrained  variability,  which  is  best correlated  with  the  unknown  disease  mechanism.
Results:  We  apply  the  method  to the  estimation  of  neuroimaging  biomarkers  for  schizophrenia,  using
task  fMRI  data  from  a large  multi-site  study.  The  proposed  approach  yields  an  improvement  in both
robustness  of the  estimate  and  classification  accuracy.
Comparison with  existing  methods:  We  find  that  unambiguous  components  incorporate  roughly  two  thirds
of the same  brain  regions  as  sparsity-based  methods  LASSO  and  elastic  net,  while  roughly  one  third  of
the  selected  regions  differ.  Further,  unambiguous  components  achieve  superior  classification  accuracy
in  differentiating  cases  from  controls.
Conclusions:  Unambiguous  components  provide  a robust  way  to estimate  important  regions  of  imaging
data.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In this paper our goal is to find the most relevant brain regions
given labeled neuroimaging data; the ultimate goal is to use those
results to understand disease mechanisms, as well as to provide
biomarkers to help diagnose (i.e., classify) patients as having dis-
ease or not. There is a significant need for techniques which
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can robustly extract information in such a problem. Neuroimag-
ing, particularly functional neuroimaging, has provided a wealth
of intriguing information regarding brain function, but has yet
to show clear value to psychiatric diagnosis (Krystal and State,
2014). Despite this, impressive results have been achieved with
machine learning techniques such as support vector machines,
which demonstrate high classification accuracies (Orr et al., 2012).
Reproducibility problems persist however (Buck, 2015), with an
apparent trend towards poorer performance for larger studies
(Schnack and Kahn, 2016).

The identification of meaningful components of the data is a key
benefit of many feature selection techniques (Guyon and Elisseeff,
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2003), in addition to providing improvements in performance of
subsequent classification stages (Chu et al., 2012). In a typical neu-
roimaging study there may  be tens or hundreds of subjects, each
with an image consisting of up to hundreds of thousands of vox-
els, resulting in an extremely underdetermined problem. A popular
category of feature selection approaches is regularized regression
techniques such as LASSO (Tibshirani, 1996) and related methods
employing sparse models (Cao et al., 2014; Lin et al., 2014). Such
supervised techniques impose task-specific information (the data
labels), with a penalty term to incorporate prior knowledge. In the
case of LASSO, the prior knowledge amounts to a presumption of
sparsity on the relationship between image data and labels, i.e., that
the underlying biological mechanism involves a limited number of
the imaged voxels. Unfortunately, if the problem is both very under-
determined and very noisy, then the regularized solution may  not
be a particularly superior choice; many solutions may  potentially
be of similar or even equal probability to each other. For example in
the underdetermined case, the LASSO solution may  not be unique
for highly-structured datasets (Tibshirani, 2013; Zhang et al., 2014).
Along these lines, we simply may  not have sufficient confidence in
the validity of our prior knowledge formulation to presume that
the most regular solution is preferable to those even moderately as
regular.

From a different direction, dimensionality reduction techniques
(Lemm et al., 2011) offer a more robust approach to feature selec-
tion in neuroimaging data. An example is principal component
analysis (PCA) (Dunteman, 1989), which finds basis vectors for the
space containing the data variation. This set of basis vectors can be
viewed as robust in the sense that they are common to all solutions
of any linear regression based on the data. In statistics a closely-
related concept is estimable functions (Milliken and Johnson, 2009).
We  will refer to components with such a property as unambigu-
ous, and examine this more formally in the next section. Of course
such components only describe the data itself, not necessarily the
aspects of the data pertinent to our application, such as for find-
ing information most related to a disease phenotype. A common
approach is to utilize PCA and related factoring methods in a super-
vised fashion by choosing a subset of factors which best correlate
with the labels. Supervised factoring techniques such as the “Super-
vised PCA” of Barshan et al. (2011), and related methods, can be
viewed as a more sophisticated version of this technique, finding a
transformation of the data such that the correlation with the labels
is maximized. However these techniques are not able to incorpo-
rate prior knowledge, such as sparsity of the mechanism, into this
transformation. Techniques have been developed which do incor-
porate sparsity into unsupervised factoring techniques (e.g., sparse
PCA of Zou et al., 2006) in a heuristic sense, though this differs
from presuming sparsity of the underlying mechanism; the pre-
sumption of sparsity is applied to the structure of the component
itself rather than to the unknown mechanism. Hybrid methods have
been proposed which perform PCA following a pre-screening step
which picks a subset of variables over a correlation threshold (Bair
et al., 2006) or in known pathways (Ma  and Dai, 2011). However
we would prefer to incorporate multi-variable relationships in the
screening component.

In this paper, we develop an approach which combines the ben-
efits of both regularized estimates and dimensionality reduction
by simultaneously enforcing unambiguity and prior knowledge
in calculating components. We  start by reviewing dimensional-
ity reduction from the perspective of unambiguous components.
Then we review related regularization methods and show how
they motivate our approach to incorporate prior knowledge into
unambiguous components. By maximizing the correlation with
the mechanism, we calculate components which identify the most
important regions in the data. We  use a simulation to show how
this component performs robustly in the face of inaccurate prior

Fig. 1. (a) Mathematical model Ax = b, where x describes the mechanism that relates
brain activity to phenotype (psychiatric assessments). The contrast map  for a single
subject, ak , provides the kth row of A. As there are still many unknown biological
variables, the problem is underdetermined and x cannot be found uniquely; instead
we must settle for a probable result such as a maximum likelihood solution which
utilizes prior knowledge, or an estimable component of x. (b) Continuum between
rowspace components and most probable solution, based on increasing confidence
in  the prior knowledge, which we control by the relaxation parameter ı1.

knowledge, by demonstrating that the correlation still remains
controlled as the prior knowledge is relaxed. Finally, we  show a suc-
cessful application to biomarker identification where we  identify
features of fMRI data which relate to schizophrenia more accurately
than other methods which utilize sparsity as prior knowledge.

2. Materials and methods

We will consider the linear model Ax = b + n where A is a m × n
data matrix with n > m, containing samples as rows, and variables
as columns; b is the phenotype encoded into a vector of labels such
as case or control; the solution x is the unknown model parame-
ters that relate A to b; and n is a noise vector about which we  have
only statistical information. We  will also assume the means have
been removed from b and the columns of A to simplify the pre-
sentation. The rows of A are provided by the contrast images from
individual study subjects, so a predictor x selects a weighted com-
bination of voxels (i.e., columns of A) which relates the imagery to
the case–control status. By examining the weightings in this com-
bination we  hope to learn more about the spatial distribution of
causes or effects of the disease, which we will term the “mecha-
nism” in this paper. The model is depicted in Fig. 1(a), where we
depict the true solution x as the mechanism whereby brain activ-
ity relates to the measured phenotypes. Of course there are far
more unknown variables than samples, hence our linear system
is underdetermined and there will be many possible x which solve
the system. One way to address this problem is to impose prior
knowledge about the biological mechanism, such as a preference
for sparser x, and select the solution which best fulfills this pref-
erence. We will review this approach in a later section. Another
approach is to restrict our analysis to components of the solution
which may  be more easily estimated, such as via dimensionality
reduction; an intuitive example of this approach is to group vox-
els into low-resolution regions. These alternatives are depicted in
Fig. 1(b), as extremes on a continuum of possible methods, where
the goal of this paper is to find intermediate information which
utilizes the benefits of both extremes.
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