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h  i g  h  l  i g  h  t  s

• Proposed  method  aims  to  detects  global  and  local  spindle  activity  in  human  sleep  EEG.
• Sparsity-aware  convex  optimization  is used  to  separate  transients  from  oscillations.
• Performance  of  proposed  method  is  illustrated  on  2 publicly  available  datasets.
• Global  spindle  detection  across  6 channels  of overnight  sleep  EEG  takes  about  4 min.
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a  b  s  t  r  a  c  t

Background:  Automated  single-channel  spindle  detectors,  for human  sleep  EEG,  are  blind  to  the  presence
of  spindles  in  other  recorded  channels  unlike  visual  annotation  by a human  expert.
New method:  We  propose  a multichannel  spindle  detection  method  that  aims  to detect  global  and  local
spindle  activity  in  human  sleep  EEG.  Using  a  non-linear  signal  model,  which  assumes  the input EEG to
be  the  sum  of  a transient  and  an  oscillatory  component,  we  propose  a  multichannel  transient  separation
algorithm.  Consecutive  overlapping  blocks  of  the multichannel  oscillatory  component  are  assumed  to  be
low-rank  whereas  the  transient  component  is assumed  to  be  piecewise  constant  with  a zero  baseline.  The
estimated  oscillatory  component  is  used  in  conjunction  with  a bandpass  filter  and  the  Teager  operator
for  detecting  sleep  spindles.
Results  and  comparison  with  other  methods:  The  proposed  method  is  applied  to  two  publicly  available
databases  and compared  with  7 existing  single-channel  automated  detectors.  F1 scores  for  the  proposed
spindle  detection  method  averaged  0.66  (0.02)  and  0.62  (0.06)  for the  two databases,  respectively.  For
an  overnight  6 channel  EEG  signal,  the  proposed  algorithm  takes  about  4  min to  detect  sleep spindles
simultaneously  across  all channels  with  a single  setting  of corresponding  algorithmic  parameters.
Conclusions:  The  proposed  method  attempts  to mimic  and  utilize,  for  better  spindle  detection,  a  particular
human  expert  behavior  where  the  decision  to  mark  a spindle  event  may  be  subconsciously  influenced
by  the presence  of  a spindle  in  EEG  channels  other  than  the central  channel  visible  on a  digital  screen.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Sleep spindles are short rhythmic oscillations visible on an elec-
troencephalograph (EEG) during non-rapid eye movement (NREM)
sleep. The center frequency of sleep spindles is between 11 and
16 Hz (Silber et al., 2007). The duration of sleep spindles is defined to
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1 Source Code available at https://github.com/aparek/mcsleep.git.

be at least 0.5 s, with some studies imposing an upper limit on their
duration to 3 s (Warby et al., 2014). Sleep spindles reflect a heritable
set of traits which is implicated in both sleep regulation and normal
cognitive functioning (Manoach et al., 2016). Recent studies have
linked spindle density (number of spindles per minute), duration,
amplitude and peak frequency of spindles to memory consolidation
during sleep (Fogel and Smith, 2011; Clawson et al., 2016), cogni-
tion in schizophrenia patients (Manoach et al., 2016; Wamsley et al.,
2012), brain dysfunction in obstructive sleep apnea (Carvalho et al.,
2014) and biomarkers for Alzheimer’s disease (Wohlleber et al.,
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2016). As a result, understanding the characteristics of sleep spin-
dles is key in studying their relation to several neuropsychiatric
diseases.

Traditionally, sleep spindles are annotated in clinics using visual
heuristics: number of peaks or bumps of the EEG signal are counted
within a specified time window. Not only is this process subjective
and time-consuming, but it is also prone to errors. Moreover, visual
inspection underscores the fine details of putated spindles (Purcell
et al., 2016). In order to reduce the subjectivity of visual detection,
it is not uncommon for studies to utilize more than one expert for
detecting spindles. However, in several cases this leads to a high
variability in inter-scorer agreement. The Cohen’s � coefficient for
inter-rater agreement in manual scoring usually ranges between
0.46 and 0.89 (Stepnowsky et al., 2013; Nonclercq et al., 2013). As
such, the presence of reliable automated spindle detectors may  not
only reduce the scoring variability (Younes et al., 2016; Younes,
2017) but may  also aid in complex longitudinal studies that involve
studying global or local sleep spindle dynamics (Purcell et al., 2016;
De Souza et al., 2016; O’Reilly and Nielsen, 2014).

Broadly categorized, there exist two-types of automated sleep
spindle detectors for single channel EEG: filtering based and non-
linear signal decomposition based. Filtering based approaches vary
from basic methods, which utilize a bandpass filter with constant or
adaptive thresholds, to advanced methods that use time-frequency
information along with bandpass filtering. Most of the filtering
based methods involve pre-processing of the desired channel of
the EEG (usually a central channel) for artifact removal (Jaleel
et al., 2014). One of the first automated detectors to be proposed
used a bandpass filter in conjunction with an amplitude threshold
(Schimicek et al., 1994). This idea is still the basis of a majority of
the bandpass filtering-based automated detectors (Wendt et al.,
2012; Devuyst et al., 2006; Martin et al., 2013; Ferrarelli et al.,
2007; Clemens et al., 2007; Gais et al., 2002). Advanced methods
utilizing time-frequency information either use a wavelet trans-
form (Lajnef et al., 2015; Adamczyk et al., 2015; Andrillon and Yuv,
2011; Erdamar et al., 2012; Tsanas and Clifford, 2015; Ahmed et al.,
2009) or a short-time Fourier transform (STFT) (Costa et al., 2012;
O’Reilly et al., 2015; Devuyst et al., 2011) with adaptive thresh-
olding to detect spindles. Several machine-learning based spindle
detectors and sleep staging algorithms have also been proposed for
single channel EEG (Acir, 2005; Gorur et al., 2002).

Non-linear signal decomposition based methods (Parekh et al.,
2014, 2015; Lajnef et al., 2015; Durka and Blinowska, 1996) attempt
to separate the non-rhythmic transients or artifacts from sinusoidal
spindle-like oscillations in the single channel sleep EEG. These
methods make use of the differing morphological aspects (Starck
et al., 2005) of the transients and spindles to overcome the draw-
backs of filtering and Fast Fourier Transform (FFT) based techniques
(Ray et al., 2015). As an another example, Gilles et al. considered
the removal of ballistocardiogram (BCG) artifacts from EEG using
low-rank and sparse decomposition (Gilles et al., 2014). In addition
to these morphological component analysis (MCA) based methods,
independent component analysis (ICA) and principal component
analysis (PCA) have also been used to detect spindles for single
channel EEG (Babadi et al., 2012). However, note that ICA assumes
linearity and stability of the mixing process along with statistical
independence of input sources (Durka et al., 2005).

1.1. Motivation

Automated spindle detectors that consider only a single channel
are blind to the presence of spindles in other recorded channels.
Such a spindle detection mechanism may  not be in concor-
dance with the way spindles are annotated visually. The American
Academy of Sleep Medicine (AASM) manual recommends using F4,
C4 and O2 channels (or alternatively Fz, Cz and C4) of the recorded
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Fig. 1. An example of a 3 channel scalp EEG from DREAMS (Devuyst et al., 2010)
database. Experts annotated two spindles (shown in bold) in the 6 s excerpt using
the central channel. The annotated spindle at 26 s has different amplitude in different
channels.

EEG with F3, C3 and O1 as backup channels (Silber et al., 2007) for
scoring of sleep and associated events. As such, while annotating
sleep events, such as spindles, rarely does an expert view a single
channel of the EEG in isolation to the other channels. This is cer-
tainly the case for studies either looking to characterize individual
global sleep spindle density (Bódizs et al., 2017) or tracking the
propagation of spindles overnight (Purcell et al., 2016; Coppieters
et al., 2016). As a result, it may  be possible that the presence of
spindles in channels other than the channel of interest subliminally
influences the experts’ decision of marking an event as a spindle.

As an example, consider the 3-channel EEG shown in Fig. 1. The
experts visually annotated the presence of a spindle at approx. 26 s.
While it is suggested that only the central channel was used for
annotating spindles (Devuyst et al., 2006), it can be seen that the
spindle at approx. 26 s is also present in the frontal and the occipital
channels, though with different amplitudes. As such it is highly
likely that the decision by a human to mark the presence of a spindle
at approx. 26 s in the central channel is reinforced by its presence
in other channels if they are viewed together on a digital screen.
Similar behavior can be seen in the case of the EEG excerpt in Fig. 2
where the experts annotated a spindle at approx. 29.5 s. While the
degree to which the decision of marking a spindle was influenced
by its presence in other channels (if it occurred simultaneously in
more than one channel) is an open question out of the scope of
this paper, utilizing it can certainly aid in a better design of the
automated spindle detectors.

Another motivation for considering multichannel EEG for study-
ing spindle activity comes from the fact that while single channel
detectors may  be used to study global spindle activity, their usage
comes at a price. Since the amplitude of spindles vary in each chan-
nel (see for example Fig. 1), amplitude-based thresholds used by
automated detectors need to be tuned separately for each chan-
nel, adding to the overall computational complexity. Additionally,
the CPU time is multiplied by the number of channels recorded.
While this additional computing time may  not be significant for
the case of basic filtering-with-thresholding methods, it is certainly
significant for advanced methods that utilize either time-frequency
information or non-linear signal decomposition.

Classifying spindles as either global (occurring across all chan-
nels) or local (occurring across a single or group of channels)
(Clawson et al., 2016; Brunton et al., 2016) is difficult using single
channel based methods. Spindles that appear on the right channels
(F4, C4, and O2 channels in Fig. 2) may  be entirely missed by detec-
tors using the left channels (F3, C3 and O1) or vice-versa, which
is the case with most detectors (Warby et al., 2014). In fact, most
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