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• A  nonstationary  generative  model  for  spike  sorting  is proposed.
• This  model  tracks  unit  drift  in  chronic  recordings  and  is  robust  to  outliers.
• It offers  improved  estimates  of  single  unit  isolation  in  empirical  data.
• An  efficient  software  implementation  is  provided  for  fitting  the  model.
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a  b  s  t  r  a  c  t

Background:  Chronic  extracellular  recordings  are  a powerful  tool  for systems  neuroscience,  but  spike sort-
ing remains  a challenge.  A  common  approach  is to fit  a generative  model,  such  as  a mixture  of Gaussians,
to  the  observed  spike  data.  Even  if non-parametric  methods  are  used  for spike  sorting,  such  genera-
tive  models  provide  a quantitative  measure  of  unit  isolation  quality,  which  is  crucial  for  subsequent
interpretation  of  the  sorted  spike  trains.
New method:  We  present  a spike  sorting  strategy  that  models  the  data  as  a mixture  of drifting  t-
distributions.  This  model  captures  two  important  features  of chronic  extracellular  recordings—cluster
drift  over  time  and  heavy  tails  in  the  distribution  of spikes—and  offers  improved  robustness  to  outliers.
Results:  We  evaluate  this  model  on  several  thousand  hours  of  chronic  tetrode  recordings  and  show  that
it fits  the  empirical  data  substantially  better  than  a mixture  of Gaussians.  We  also  provide  a  software
implementation  that  can  re-fit  long  datasets  in  a few  seconds,  enabling  interactive  clustering  of  chronic
recordings.
Comparison  with  existing  methods:  We  identify  three  common  failure  modes  of  spike  sorting  methods
that  assume  stationarity  and  evaluate  their  impact  given  the  empirically-observed  cluster  drift  in chronic
recordings.  Using  hybrid  ground  truth  datasets,  we also  demonstrate  that  our  model-based  estimate  of
misclassification  error  is more  accurate  than  previous  unit  isolation  metrics.
Conclusions:  The  mixture  of  drifting  t-distributions  model  enables  efficient  spike  sorting  of long  datasets
and  provides  an  accurate  measure  of  unit  isolation  quality  over  a  wide  range  of conditions.

©  2017  The  Author(s).  Published  by Elsevier  B.V.  This  is  an  open  access  article  under  the  CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Chronic extracellular recordings offer access to the spiking activ-
ity of neurons over the course of days or even months. However,
the analysis of extracellular data requires a process known as spike
sorting, in which extracellular spikes are detected and assigned to
putative sources. Despite many decades of development, there is no
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universally-applicable spike sorting algorithm that performs best
in all situations.

Approaches to spike sorting can be divided into two categories:
model-based and non-model-based (or non-parametric). In the
model-based approach, one constructs a generative model (e.g. a
mixture of Gaussian distributions) that describes the probability
distribution of spikes from each putative source. This model may
be used for spike sorting by comparing the posterior probability
that a spike was generated by each source. Fitting of such models
may be partially or fully automated using maximum likelihood or
Bayesian methods, and the model also provides an estimate of the
misclassification error.

http://dx.doi.org/10.1016/j.jneumeth.2017.06.017
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In the non-parametric approach, spike sorting is treated solely
as a classification problem. These classification methods may  range
from manual cluster cutting to a variety of unsupervised learning
algorithms. Regardless of the method used, scientific interpreta-
tion of the sorted spike train still requires reliable, quantitative
measures of unit isolation quality. Often, these heuristics either
explicitly (Hill et al., 2011) or implicitly (Schmitzer-Torbert et al.,
2005) assume that the spike distribution follows a mixture of Gaus-
sian distributions.

However, a mixture of Gaussians does not adequately model
the cluster drift and heavy tails that are observed in experimental
data (Fig. 1). Cluster drift is a slow change in the shape and ampli-
tude of recorded waveforms (Fig. 1C), usually ascribed to motion of
the recording electrodes relative to the neurons (Snider and Bonds,
1998; Lewicki, 1998). This effect may  be small for short recordings
(<1 h), but can produce substantial errors if not addressed in longer
recordings (Fig. 7). Even in the absence of drift, spike residuals have
heavier tails than expected from a Gaussian distribution, and may
be better fit using a multivariate t-distribution (Figs. 1D and 6 ; see
also Shoham et al., 2003; Pouzat et al., 2004).

To address these issues, we model the spike data as a mixture
of drifting t-distributions (MoDT). This model builds upon previous
work that separately addressed the issues of cluster drift (Calabrese
and Paninski, 2011) and heavy tails (Shoham et al., 2003), and we
have found the combination to be extremely powerful for model-
ing and analyzing experimental data. We  also discuss the model’s
robustness to outliers, provide a software implementation of the
fitting algorithm, and discuss some methods for reducing errors
due to spike overlap.

We  used the MoDT model to perform spike sorting on 34,850
tetrode-hours of chronic tetrode recordings (4.3 billion spikes)
from the rat hippocampus, cortex, and cerebellum. Using these
experimental data, we evaluate the assumptions of our model and
provide recommended values for the model’s user-defined param-
eters. We  also analyze how the observed cluster drift may impact
the performance of spike sorting methods that assume station-
arity. Finally, we evaluate the accuracy of MoDT-based estimates
of misclassification error and compare this to the performance of
other popular unit isolation metrics in the presence of empirically-
observed differences in firing rate and spike variability.

2. Methods

2.1. Mixture of drifting t-distributions (MoDT) model

Spike sorting begins with spike detection and feature extraction.
During these preprocessing steps, spikes are detected as discrete
events in the extracellular voltage trace and represented as points
yn in some D-dimensional feature space.

The standard mixture of Gaussians (MoG) model treats this spike
data yn as samples drawn from a mixture distribution with PDF
given by

fMoG
(
yn; �

)
=

K∑
k=1

˛kfmvG (yn; �k, Ck) ,

where � = { . . .,  ˛k, �k, Ck, . . . } is the set of fitted parameters, K is
the number of mixture components, ˛k are the mixing proportions,
and fmvG(y; �, C) is the PDF of the multivariate Gaussian distribution
with mean � and covariance C:

fmvG(y; �, C) = 1

(2�)D/2|C|1/2
exp

[
− 1

2
ı2(y; �, C)

]
.

Table 1
Mathematical notation. Lowercase bold letters (yn , �kt) denote D-dimensional vec-
tors, and uppercase bold letters (Ck , Q) denote D × D symmetric positive definite
matrices.

Dimensions
D Number of feature space dimensions
N  Number of spikes
K  Number of clusters
T  Number of time frames

Given data
yn Observed spike n
tn Time frame in which spike n occurred
wn Weighting of spike n (multiplier

applied to log-likelihood)

User-defined constants
� t-distribution degrees-of-freedom

parameter
Q Drift regularization parameter

Fitted model parameters
˛k Mixing proportion for cluster k
�kt Location parameter for cluster k in

time frame t
Ck Scale parameter for cluster k

Latent variables introduced by EM procedure
znk Posterior probability that spike n

belongs to cluster k
unk Scaling variable introduced in

formulating the t-distribution as a
Gaussian-Gamma compound
distribution

For notational convenience, let ı2 denote the squared Mahalanobis
distance

ı2 (y; �, C) = (y − �)�C−1 (y − �) .

We make two changes to this model. First, we  replace the mul-
tivariate Gaussian distribution with the multivariate t-distribution.
The PDF for this distribution, parameterized by location �, scale C,
and degrees-of-freedom �, is given by

fmvt(y; �, C, �) = 1

(��)D/2|C|1/2

�((� + D)/2)
�(�/2)

[1 + 1
�
ı2(y; �, C)]

−(�+D)/2

Second, we  break up the dataset into T time frames (we used a
frame duration of 1 min) and allow the cluster location � to change
over time. The mixture distribution becomes

fMoDT
(
yn; �

)
=

K∑
k=1

˛kfmvt
(
yn; �ktn , Ck, �

)
,

where tn ∈ {1, . . .,  T} denotes the time frame for spike n. We  use a
common � parameter for all components and have chosen to treat it
as a user-defined constant. The fitted parameter set is thus � = { . . .,
˛k, �k1, . . .,  �kT, Ck, . . . }.

In order to enforce consistency of the component locations
across time, we  introduce a prior on the location parameter that
penalizes large changes over consecutive time steps. This prior has
a joint PDF proportional to

fprior(�k1, . . .,  �KT ) =
T∏
t=2

fmvG(�kt − �k(t−1); 0, Q ), (1)

where Q is a user-defined covariance matrix that controls how
much the clusters are expected to drift.

2.2. EM algorithm for model fitting

Assuming independent spikes and a uniform prior on the
other model parameters, we can obtain the maximum a posteri-
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