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h  i  g  h  l  i g  h  t  s

• An  analytical  measure  capable  of integrating  different  aspects  of  signal  morphology  is  introduced.
• We  demonstrate  its usefulness  for  the  analysis  of event-related  potential  waveforms.
• It can  detect  effects  of experimental  manipulation  in  the  absence  of  obvious  peaks.
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a  b  s  t  r  a  c  t

Background:  Event-related  potential  waveforms  are  often  analysed  in  the  time-domain  for  changes  of
striking  morphological  features,  like  amplitudes  or latencies  of extrema,  at the  expense  of missing  less
obvious  changes  in  overall  morphology.
New  method:  The  measure  of  total variation  can  capture  a variety  of  changes  in  curve  morphology.  We
show analytical  examples,  and  the application  to two  sets  of  EEG  data  (n1 =  41,  n2 =  19)  difficult  to  analyse
with  more  traditional  methods.
Results:  Total  variation  can  be  used  to identify  the  effects  of  experimental  manipulations  on  event-related
potential  waveforms,  and  can  additionally  be used  to identify  the  respective  time  windows  by  means  of
hierarchical  subdivision  of  longer  signals.
Comparison  with  existing  methods:  The  ANOVA  of  total  variation  provided  additional  insights  into  effects
already  hinted  at by the  ANOVA  of  global  field  power  in  the  first experiment,  and  identified  a  number  of
interactions  missed  by  an ANOVA  of  amplitude  as  well  as  a topographic  ANOVA  in  the  second  one.
Conclusions:  The  analysis  of  total  variation  can  be  an  interesting  complement  to  more  traditional  analyses,
especially  when  changes  are hard  to  assess  with  traditional  methods,  e.g.  in  the absence  of pronounced
extrema,  or  the  presence  of  noise  or large  interindividual  variations  of  latency.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Event-related potential waveforms (ERPs) are commonly ana-
lysed in the time-domain for prima facie features of the curve, like
peak amplitudes and latencies, or their respective differences. In
the frequency-domain, on the other hand, it is possible to ana-
lyse ERPs as a whole for changes in amplitude or phase at certain
frequencies.

Conventional methods in the time-domain are usually com-
pletely ignorant with respect to features in the frequency-domain
and vice versa. It is usually not possible, for example, to detect
changes of frequency content by analysing amplitudes, latencies,
or simple moment estimates like mean and variance, whereas in
a Fourier-analysis, shifts in peak-latency could only be detected
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as obscure changes of phase over the whole range of frequencies,
which may  remain undetected, as the phase-spectrum is often not
looked at, leaving only changes of the amplitude-spectrum as a
subject of analysis.

Wavelet- and Gabor-analysis or similar methods (Witte et al.,
2008; Wacker and Witte, 2013) may  provide a way out of this
dilemma by merging time- and frequency-domain analysis, but
doing statistics correctly may  prove challenging in this context
(Maraun et al., 2007), and it is not easy to decide what exactly
to search for: complex wavelets provide amplitude- and phase-
scalograms, but while the information provided by the former is
quite obvious, as in their simplest form they can indicate, whether
a certain “frequency” is “present” at a given time, the latter are only
poorly understood, although useful information can be inferred
from them (Deng et al., 2005a,b).

While all these are well-established methods of analysis, many
of them tend to focus very narrowly on specific features like peaks
and their latencies, perhaps within given regions of interest, while
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ignoring everything else. On the other hand, trying to analyse ERPs
as a whole by simply treating them as stochastic processes and esti-
mating their moments is not effective, either, as moment estimates
have difficulty representing the overall morphology of a signal.

ERPs often show considerable interindividual variation. Aside
from obvious differences in mean, variance, extremal amplitudes,
and feature latencies, there may  also be differences in the gen-
eral shape of components: temporal dilatation or contraction may
occur, additional superimposed fast undulations might undergo
changes in amplitude, frequency or phase, or additional local
extrema on the shoulders of larger components might occur or
change. Such changes may  occur alone or simultaneous, and may
or may  not influence the above measures.

After all, it seems desirable to have an additional measure quan-
tifying overall signal morphology, as opposed to measures for
specific features only. We  think that one useful descriptor for such
a task is a measure called “total variation”. In the following, we  will
give an analytical definition of this measure, work out a few analyt-
ical examples, show a few simulations comparing its performance
to other measures, and finally apply it for the analysis of data taken
from two EEG experiments. The results show that the analysis of
total variation may  provide additional insight into morphological
changes of signals that might otherwise remain unnoticed, thus
complementing traditional methods of analysis with little addi-
tional effort in computation.

Although the concept of total variation is by no means new, it
seems to have largely gone unnoticed as a general means for sig-
nal analysis. The concept itself appears under the name “short time
line length” in Dümpelmann et al. (2012, p. 1723) as a means for
detection of high frequency ripples in epilepsy, and a similar con-
cept has been used as an intermediate step for fractal analyses of
waveforms (Katz, 1988). However, we currently know of no appli-
cation of the measure itself for the evaluation and comparison of
signal morphologies.

2. Analytical total variation

2.1. Definition and elementary properties

Let [a, b] ⊂ R  be an interval and f : [a, b] → R  any function, then
the total variation of f is defined as (Sohrab, 2003, p. 284, Def. 7.6.1)

sup

{
n∑

k=1

∣∣f (xk) − f (xk−1)
∣∣ : n ∈ N, a = x0 < . . . < xn = b

}
.

For any continuously differentiable f on an interval [a, b] ⊂ R, the
total variation can be calculated as (Sohrab, 2003, p. 295)

V[a,b](f ) :=
∫ b

a

∣∣f ′(x)
∣∣ dx. (1)

These somewhat abstract formulæ can be explained immedi-
ately, when we  restrict ourselves to continuously differentiable
functions with only a handful of extrema (“smooth functions”) for
the sake of simplicity:

Suppose we have a function f : [a, b] �→ R  with n extrema at
x1, . . .,  xn ∈ (a, b) ∈ R—which are the points where f′ changes its
sign, and thus maxima or minima occur—and set additionally x0 = a,
xn+1 = b. In this case we can write∫ b

a

∣∣f ′(x)
∣∣ dx =

n+1∑
k=1

∣∣f (xk) − f (xk−1)
∣∣ , (2)

which is just the sum of the differences of the ordinates at adja-
cent extremal points including the borders, or in other words, the
total distance an imaginary pen drawing the curve would travel

in y-direction. As an immediate consequence, we  see that a sec-
ond function g : [ā, b̄]  �→ R  with n extrema at x̄1, . . ., x̄n ∈ (ā, b̄) and
f (xk) = g(x̄k) for all k will have the same total variation, although
the intervals [a, b] and [ā, b̄] may  differ in length.

In the case of digitised data D = (d0, . . .,  dn), we do not need to
determine any extrema at all, as we  can approximate Formula (1)
directly: Setting � as the operator computing the first order dif-
ferences dk − dk−1, and remembering that the 1-Norm is defined as
‖ (y1, . . .,  yn) ‖1 :=

∑n
k=1

∣∣yk

∣∣ , we get the following approximation
of Formula (1)1:

V[a,b]f ≈ ‖�D‖1,

because � approximates the first derivative, and ||·||1 approximates
the integral of the absolute value, both with reciprocal factors of
proportionality. For a given vector of recorded data, we  can there-
fore estimate V[a,b]f directly by means of the simple command
norm (diff (D), 1) in GNU-Octave (Octave community, 2012), for
example.

2.2. Examples

2.2.1. Analytical examples
A polynomial.  Let f(x) : = (x − 1) · (x − 2) · (x − 3) = x3 − 6x2 + 11x  − 6.

What is the total variation of f on [0, 4] ?
After differentiating we  get f′(x) = 3x2 − 12x  + 11, and the

extremal abscissæ can be determined as the zeroes thereof, which
are x1,2 = 2 ± 1/

√
3. Using Formula (2) we  get

V[0,4]f =
3∑

k=1

|f (xk) − f (xk−1)| =
∣∣∣ 2

3
√

3
− (−6)

∣∣∣ +
∣∣∣− 2

3
√

3
− 2

3
√

3

∣∣∣
+

∣∣∣6 −
(

− 2

3
√

3

)∣∣∣ = 12 + 8

3
√

3
≈ 13.54.

Harmonic oscillations. Let g (x) := sin(k · x), k ∈ N. What is the
total variation of g on an interval [a, b] ⊂ R?

We simplify the calculations somewhat by first noting that the
total variation of a complete cycle of a (co)sine is 4, and that a
complete cycle of g happens on an interval of length 2�/k. Now
let xa : = � a/(2�/k) � · 2�/k ≥ a and xb : = �b/(2�/k) � · 2�/k ≤ b the first
start and last end, respectively, of such a complete cycle in the
vicinity of [a, b], and n := (xb − xa)/(2�/k) ∈ Z,  n ≥ −1. Basically,
n counts the number of complete cycles in [xa, xb], but since we
never required xa < xb, n may  take the values -1 or 0 as well. Putting
the pieces together, we  get

V[a,b]g =
∫ xa

a

k
∣∣cos kx

∣∣ dx + 4n +
∫ b

xb

k
∣∣cos kx

∣∣ dx.

In order to work out an example, take a : =0.5, b : =17.4 and k : =7.
In this case we have xa = 1 · 2�/7, xb = 19 · 2�/7 and n = 18. The final
result is thus

V[0.5,17.4] sin  7x  =
∫ 2�/7

0.5

7
∣∣cos  7x

∣∣ dx  +  4  ·  18  +
∫ 17.4

19  · 2�/7

7
∣∣cos  7x

∣∣ dx

≈ 1.65  +  72  +  1.34  =  74.99.

Note that the concept described above is not equivalent to the
concept of “curve length” used by Katz (1988). In order to com-
pute “curve length”, roughly representing the visual length of a

1 Note, however, that the quality of approximation is dependent on the smooth-
ness of the data, which is directly related to the sampling frequency: The formulæ
work well when the maximal frequency in the data is well below the Nyquist limit,
as  is the case for the data analysed in this paper and probably most real recordings
of  EEG or ERP signals, but results will get worse as high frequencies and noise creep
up,  in which case more elaborate approximations would have to be used.
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