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• Deep  learning  is  combined  with  compressed  sensing  to mine  discriminative  mVEP  information.
• The  deep  learning  and  compressed  sensing  approach  can  generate  multi-modal  features.
• The  proposed  multi-modal  feature  can  effectively  improve  the  BCI  performance  with  approximately  3.5%  accuracy  incensement.
• The  deep  learning  and  compressed  sensing  approach  is more  effective  for  subjects  with  relatively  poor  performance.
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a  b  s  t  r  a  c  t

Background:  Motion-onset  visual  evoked  potentials  (mVEP)  can  provide  a softer  stimulus  with  reduced
fatigue,  and  it  has  potential  applications  for  brain  computer  interface(BCI)systems.  However,  the  mVEP
waveform  is seriously  masked  in  the strong  background  EEG  activities,  and  an  effective  approach  is
needed  to extract  the corresponding  mVEP  features  to perform  task  recognition  for  BCI  control.
New  method:  In  the  current  study,  we combine  deep  learning  with  compressed  sensing  to  mine  discrim-
inative  mVEP  information  to improve  the  mVEP  BCI  performance.
Results:  The  deep  learning  and  compressed  sensing  approach  can  generate  the multi-modality  features
which  can  effectively  improve  the  BCI performance  with  approximately  3.5%  accuracy  incensement  over
all 11 subjects  and  is more  effective  for those  subjects  with  relatively  poor  performance  when  using  the
conventional  features.
Comparison with existing  methods:  Compared  with  the  conventional  amplitude-based  mVEP  feature
extraction  approach,  the  deep  learning  and  compressed  sensing  approach  has  a  higher  classification
accuracy  and  is  more  effective  for  subjects  with  relatively  poor  performance.
Conclusions:  According  to the  results,  the deep  learning  and  compressed  sensing  approach  is  more  effec-
tive  for  extracting  the  mVEP  feature  to construct  the  corresponding  BCI  system,  and  the  proposed  feature
extraction  framework  is easy  to extend  to other  types  of BCIs,  such as  motor  imagery  (MI),  steady-state
visual  evoked  potential  (SSVEP)and  P300.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A Brain Computer Interface (BCI) is used to establish com-
munication between humans and output devices, such as a
computer application or a neuroprosthesis via noninvasive or
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invasive approaches. For noninvasive BCI, a scalp-recorded elec-
troencephalogram (EEG) from a participant conveys intentions
according to some well-defined paradigms (e.g., motor imagery or
some external visual stimuli), and it is the mostly widely used signal
for BCI control due to its low cost and portability. There are various
BCI types, based on the EEG signals used to perform BCI control;
of these, the VEP-based BCI is one of the important branches in an
EEG-based BCI system (Liu et al., 2004; Page et al., 2005; Wolpaw
et al., 2000; Wolpaw and McFarland, 2004). The main merit of VEP-
based BCI is that it can evoke the relative stable control signal and
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does not need a comprehensive training procedure for the subject,
so that it can provide the effective control (Bin et al., 2009a; Lee
et al., 2006; Momose, 2007). However, most of the VEP-based BCIs
use a light flash or pattern reversal (i.e., a high contrast and a bright
luminance of a visual object) to evoke the related brain signals for
control (Bin et al., 2009b; Müller-Putz and Pfurtscheller, 2008; Y.
Zhang et al., 2012). In practical situations, these approaches may
cause visual fatigue in the BCI user, especially after long-term use
(Beveridge et al., 2015; Gao and Gao, 2014). Recently, a new VEP
stimulus, i.e., motion-onset VEP (mVEP), was introduced that can
provide a relatively softer stimulus and has been used to build the
online-BCI system (Guo et al., 2008; Marshall et al., 2015). The mVEP
represents a visual motion response from the middle temporal
area (MT) and the medial superior temporal area (MST). Compared
to the traditional VEP-based BCI using pattern-onset or pattern-
reversal stimulus, the mVEP-based BCI requires no sudden change
in luminance or high contrast of visual objects; thus, subjects have
less visual fatigue and feel more comfortable. Motion-onset evoked
potentials (mVEP) are mainly characterized by three components:
P1, N2, and P2. P1 usually occurs at approximately 130 ms.  N2
is produced in the temporal-occipital regions at 160–200 ms  and
mainly reflects neural activity (Kuba et al., 2007) and processed
motion vision (Hollants-Gilhuijs et al., 2000). P2 commonly occurs
at approximately 240 ms  and is mainly distributed in the parietal
and central areas of the brain (Kuba and Kubová, 1992).

mVEP is deeply masked in strong background noise, and several
repeated stimuli are usually required to perform the averaging for
a reliable mVEP waveform. Generally, the more repeated trials that
are involved in averaging, the higher quality the mVEP is. How-
ever, for an online BCI system, it is necessary to extract the EEG
features and perform the recognition as quickly as possible. There-
fore, the repeated stimulus number is usually sufficiently small that
the mVEP waveform has a low signal to noise ratio (SNR) and the
three components of mVEP are, consequently, difficult to extract
reliably.

Currently, the most frequently used feature extraction method
for mVEP is to directly utilize the amplitude information of N2 and
P2 to perform the recognition (Kuba et al., 2007). The low SNR of
the mVEP encountered in an online BCI system will weaken the BCI
performance. Therefore, the effective feature extraction is crucial
to improving the mVEP BCI performance.

Recently, compressed sensing and deep learning have been
widely utilized in feature extraction. Compressed sensing has
mainly been applied in the fields of image feature extraction (Li
et al., 2011; K. Zhang et al., 2012), speech recognition (Gemmeke
et al., 2010), and speech compression (Gunawan et al., 2011). The
most important role of compressed sensing is to extract the primary
information from the redundant original signal effectively in real
time, reconstruct signals and satisfy the requirements of both pre-
vention against overfitting and dimension reduction and the need
of fast real-time at the same time especially for online-BCI system.
Deep learning, which can extract the distributed features of a finite
sample, is mainly used in fields such as speech recognition (Bengio
et al., 2013; Sainath, 2014) and computer vision (Cui et al., 2014;
Sohn et al., 2011).

Derived from the potential of compressing sensing and deep
learning for feature extraction, we developed a novel approach
combined with two known approaches to extract the mVEP fea-
tures for the BCI system in this study.

2. Methodology

2.1. EEG recording

Overall, 11 subjects (3 females, 8 males, aged 23.6 ± 1.2 years)
participated in the experiment. They all had normal or corrected

to normal vision. The experimental protocol was  approved by the
Institution Research Ethics Board of the University of Electronic
Science and Technology of China. All participants were asked to
read and sign an informed consent form before participating in
the study. After the experiment, all participants received monetary
compensation for their time and effort.

Ten Ag/AgCl electrodes (CP1, CP2, CP3, CP4, P3, P4, Pz, O3, O4,
Oz) from an extended 10–20 system were placed for EEG recordings
with a Symtop amplifier (Symtop Instrument, Beijing, China). All
electrode impedances were kept below 5 k�, and the AFz electrode
was used as a reference. The EEG signals were sampled at 1000 Hz
with a 50 Hz notch filter.

The visual stimuli were presented on a 14-in. LCD monitor with
a 60 Hz refresh rate and 1280 × 1024 resolution and were viewed
from a distance of 50 cm.  Fig. 1(a) shows the graphical user inter-
face (GUI) for the subjects in the experiment, with a visual field
of 30◦ × 19◦ on the screen. Six virtual buttons representing 1, 2,
3, 4, 5, and 6 were embedded in the rectangle interface, and each
had a visual field of 4◦ × 2◦. In each virtual button, a red vertical
line appeared on the right side of the button and moved leftward
until it reached the left side of the button to form a brief motion-
onset stimulus. The entire move took 140 ms,  with a 60-ms interval
between consecutive moves. The motion-onset stimulus in each
of the six buttons appeared in a random order, and a trial was
defined as the complete and successive appearance of a motion-
onset stimulus in all six virtual buttons. The interval between two
trials was  300 ms,  and each trial lasted 1.5 s (see Fig. 1(b)). Five trials
comprised a block, which took 7.5 s.

During the experiment, the subject needed to focus on the but-
ton that was  indicated in the center of the graphical user interface,
and the instructed number was  randomly generated. To increase
their attention, the subject was  asked to silently count the time
between moving stimuli appearing in the target buttons. A total
of 72 blocks, including 360 trials, was collected for each subject in
two separate equal sessions, with a 2-min rest period between ses-
sions. The first session was  used as a training set, and the second
session was used as a test set for the analyses. For details on the
EEG data set, please refer to our previous work (Zhang et al., 2015).
In this study, we used the collected data set to evaluate the feasi-
bility of using combined sensing and deep features to improve the
performance of an mVEP BCI system.

2.2. EEG processing

In the EEG recordings, each flashing button had 5 trials in each
block. Before feature extraction, processing including ocular artifact
removal, bandpass filtering, and averaging were applied to the trials
corresponding to each button. This EEG analysis procedure is shown
in Fig. 2.

In the current study, ±75 �v was used as the threshold for ocu-
lar artifact removal, and trials with an EEG amplitude exceeding
this threshold were discarded from the analysis. Then, artifact-
free trials were bandpass filtered within 0.5–10 Hz for each subject.
Finally, the filtered trials were averaged according to the flashing
box. After the processing procedure in Fig. 2, 6 averaged ERPs with
each corresponding to one flashing box were estimated in each
block. Among the 6 ERPs, the only ERP corresponding to the indi-
cated number cue was defined as the target, which theoretically
had the strongest mVEP. The remaining 5 trials were treated as
the non-target. The aim of the following feature extraction was to
extract discriminative information such that only one target would
be recognized from the six ERPs. Because the characterized com-
ponents of mVEP were N2 and P2, a time window of 131–322 ms,
which covered these two  components, was  used as our time win-
dow for mVEP-related feature extraction at electrodes P3 and Pz in
the occipital region.
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