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h  i  g  h  l  i g  h  t  s

• A  “CTVAR”  model for  Neurophysiological  processes  is  proposed.
• Subsampling  analysis  based  on  an  exact  analytic  solution  of  the  model  is  performed.
• Interactions  between  timescales  of  signal  delay  and sampling  frequency  are  revealed.
• GC  detectability  decays  exponentially  for  sample  intervals  beyond  causal  delay  time.
• “Black  spots”  and “sweet  spots”  in  GC  detectability  are  discovered.
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a  b  s  t  r  a  c  t

Background:  Granger  causality  is  well  established  within  the neurosciences  for  inference  of  directed
functional  connectivity  from  neurophysiological  data.  These  data  usually  consist  of  time  series  which
subsample  a continuous-time  biophysiological  process.  While  it is  well  known  that  subsampling  can
lead  to imputation  of  spurious  causal  connections  where  none  exist,  less  is known  about  the  effects  of
subsampling  on  the  ability  to reliably  detect  causal  connections  which  do  exist.
New method:  We  present  a theoretical  analysis  of the  effects  of  subsampling  on Granger-causal  inference.
Neurophysiological  processes  typically  feature  signal  propagation  delays  on multiple  time  scales;  accord-
ingly, we  base  our  analysis  on a  distributed-lag,  continuous-time  stochastic  model,  and  consider  Granger
causality  in  continuous  time  at finite  prediction  horizons.  Via  exact  analytical  solutions,  we identify
relationships  among  sampling  frequency,  underlying  causal  time  scales  and  detectability  of  causalities.
Results:  We  reveal  complex  interactions  between  the  time  scale(s)  of  neural  signal  propagation  and  samp-
ling  frequency.  We  demonstrate  that detectability  decays  exponentially  as the  sample  time  interval
increases  beyond  causal  delay  times,  identify  detectability  “black  spots”  and  “sweet  spots”,  and  show
that  downsampling  may  potentially  improve  detectability.  We  also  demonstrate  that  the invariance
of  Granger  causality  under  causal,  invertible  filtering  fails  at finite  prediction  horizons,  with  particular
implications  for inference  of  Granger  causality  from  fMRI  data.
Comparison  with  existing  methods:  Our analysis  emphasises  that  sampling  rates  for  causal  analysis  of
neurophysiological  time  series  should  be informed  by  domain-specific  time  scales,  and  that  state-space
modelling  should  be  preferred  to  purely  autoregressive  modelling.
Conclusions:  On the  basis  of a very  general  model  that  captures  the structure  of neurophysiological  pro-
cesses,  we  are  able  to help  identify  confounds,  and  offer  practical  insights,  for  successful  detection  of
causal  connectivity  from  neurophysiological  recordings.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Neurophysiological recordings are generally obtained by samp-
ling, at regular discrete time intervals, a continuous-time analogue
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signal associated with some underlying biophysiological processes.
Thus, for example, electroencephalography (EEG) records electrical
activity arising from ionic current flows in the brain, magnetoen-
cephalography (MEG) records the weak magnetic fields produced
by neuronal currents, while functional magnetic resonance imag-
ing (fMRI) measures changes in blood oxygenation level associated
with neural activity (Logothetis et al., 2001). Even spike train
recordings are typically derived from a continuous analogue mea-
surement of cellular membrane potentials.
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Wiener–Granger causality (Wiener, 1956; Granger, 1963, 1969,
1981; Geweke, 1982) – henceforth just Granger causality, or GC
– is a popular technique for inferring directed functional connec-
tivity of the underlying process in the neurosciences (Seth et al.,
2015), from (discrete-time) subsampled1 process. Granger causal-
ity is premised on a notion of causality whereby cause (a) precedes
effect and (b) contains unique information about effect. This idea
is commonly (but not exclusively) operationalised within a vec-
tor autoregressive (VAR) modelling framework. At this point, we
recognise that the ascription of a “causal” interpretation to GC is
clearly problematic to some. Our view is that Granger causality
represents a rather than the notion of causality, an avowedly sta-
tistical, as opposed, e.g., to “interventionist” notions (Pearl, 2009).
As such, its strengths and limitations have been widely discussed
[see e.g. Valdes-Sosa et al. (2011) for a review of the issues involved
with regard to biophysical modelling; also Chicharro and Panzeri
(2014)], and we do not enter that debate here. We  remark, how-
ever, that Granger causality also has a principled interpretation –
through its intimate relationship (Barnett et al., 2009; Barnett and
Bossomaier, 2013) with the information-theoretic transfer entropy
(Schreiber, 2000; Paluš et al., 2001) – as a measure of informa-
tion transfer, and we generally prefer this interpretation (Lizier and
Prokopenko, 2010), particularly with regard to functional connec-
tivity analysis.

Problems associated with Granger-causal inference from sub-
sampled (or otherwise aggregated) time series have long been
noted (Granger, 1969; Sims, 1971; Wei, 1981; Marcellino, 1999;
Breitung and Swanson, 2002). Specifically, it has been observed
that subsampling may  distort GC values. This may  be considered
especially problematic in two distinct aspects:

(i) Spurious causality, where GC is absent at the finer time scale,
but non-zero for the subsampled process (Comte and Renault,
1996; Renault et al., 1998; Breitung and Swanson, 2002;
McCrorie and Chambers, 2006; Solo, 2007, 2016), and

(ii) Undetectable causality, where GC is present at the finer time
scale, but zero (or too small to detect reliably) for the subsam-
pled process (Barnett and Seth, 2011; Seth et al., 2013; Zhou
et al., 2014).

Subsampling may, in addition, distort the relative strengths of
causalities (Solo, 2016).

Solo (2007, 2016), drawing on previous work by Caines (1976),
distinguishes between the conventional “weak” causality and
“strong” causality (see Section 2.1), and concludes that only strong
causality remains undistorted by subsampling. Seth et al. (2013)
demonstrate that GC inference from fMRI data may  be severely
degraded by the sample rates, slow in comparison to underlying
neural time scales, of fMRI recording technologies. More recently,
Zhou et al. (2014) report oscillations in estimated causalities with
varying sampling frequency, with causal estimates almost vanish-
ing at some frequencies, as well as inference of spurious causalities.

Although Granger himself was clearly concerned about the
detectability problem – in Granger (1969) he notes that “[. . .]  a
simple causal mechanism can appear to be a feedback mechanism2

if the sampling period for the data is so long that details of causal-
ity cannot be picked out” – subsequent studies have concentrated

1 The term “subsample” refers throughout to sampling of a discrete- or
continuous-time process at regular intervals. We reserve the term “downsample”
for the further subsampling of an already-sampled discrete-time process.

2 Here, by “feedback mechanism”, Granger refers to contemporaneous feedback
between time series [Geweke (1982) terms this “instantaneous feedback”], as
opposed to time-delayed feedback, which in his theory underpins “causal mecha-
nism”; see Section 2.1 for details.

mostly on spurious causality. Here we  investigate detectability:
specifically, we examine how the relationship between the under-
lying time scale of causal mechanisms and the sampling time scale
mediates the distortion of (non-zero) Granger causalities, and how
this distortion impacts on statistical inference of Granger causal-
ity from empirical data. We  discuss the implications of our results
with regard to the successful inference of Granger causalities at the
structural (neural) level, from neurophysiological recordings.

1.1. Contributions of this study

A significant feature of the neuronal systems underlying such
measurements is the potential range of signal propagation delays
due to variation in biophysical parameters such as axonal length,
diameter, conduction velocity and myelination (Miller, 1994; Budd
and Kisvárday, 2012; Caminiti et al., 2013). Here we model the
underlying analogue signal as a stochastic linear autoregression
in continuous time. Unlike prevailing continuous-time stochastic
process models in the neurosciences, our model accommodates
distributed lags on arbitrary time scales, and is thus able to
reflect variability of signal propagation delays. This leads, via con-
sideration of prediction at finite time horizons, to a novel and
intuitive definition of Granger causality at multiple time scales
for continuous-time processes. In contrast to previous work on
continuous-time Granger causality, in which various statistical
(non)causality test criteria have been proposed, our definition
is quantitative, furnishing a Granger–Geweke measure with an
information-theoretic interpretation.

Using discrete-time VAR modelling, we then analyse the prop-
erties of processes obtained by subsampling the temporally
multiscale continuous-time process, and relate the spectral and
causal properties of the subsampled process to those of the under-
lying continuous-time model. Having defined continuous-time,
finite-horizon GC – which represents a target for statistical analysis
– we  investigate the extent to which it may  be inferred, and in par-
ticular detected, by discrete-time VAR analysis of the subsampled
processes.

We focus on the practical questions of the feasibility and reliabil-
ity of causal inference on sampling frequency and the (dominant)
time scale of causal feedback in the generative process. We  inves-
tigate in detail the relationship between sampling frequency and
the quality of causal inference via a fully analytic solution of a mini-
mal, but non-trivial, bivariate model in continuous time, with finite
causal delay.

On the basis of our theoretical and empirical analysis, we iden-
tify critical relationships between causal delay, sampling interval
and detectability of Granger causality. These include exponential
decay of subsampled Granger causalities with increasing samp-
ling interval, resonance between sampling frequency and causal
delay frequency, potential detectability “black spots”, and the exist-
ence of a non-zero optimal sampling interval (i.e., detectability
may  sometimes be improved by downsampling). We  also discover
a hitherto unremarked non-invariance of finite-horizon/multistep
GC under causal, invertible filtering (in contrast with the known
invariance of single-step discrete-time GC).

Finally, we  discuss the implications of our findings for
Granger-causal inference of neural functional relationships from
neurophysiological recordings under various technologies –
including fMRI, which continues to generate controversy.

1.2. Organisation

The paper is organised as follows: in Section 2 we
review essential aspects of the theory of VAR processes and
Granger causality in discrete time. In Section 3 we introduce
CTVAR (continuous-time vector autoregressive) processes as
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