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HIGHLIGHTS

® A “CTVAR” model for Neurophysiological processes is proposed.

® Subsampling analysis based on an exact analytic solution of the model is performed.
® Interactions between timescales of signal delay and sampling frequency are revealed.
® GC detectability decays exponentially for sample intervals beyond causal delay time.
® “Black spots” and “sweet spots” in GC detectability are discovered.

ARTICLE INFO ABSTRACT

Article history: Background: Granger causality is well established within the neurosciences for inference of directed
Recef"e‘j f‘ NOVFmber 2015 functional connectivity from neurophysiological data. These data usually consist of time series which
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Available online 5 November 2016 lead to imputation of spurious causal connections where none exist, less is known about the effects of

subsampling on the ability to reliably detect causal connections which do exist.

New method: We present a theoretical analysis of the effects of subsampling on Granger-causal inference.
Neurophysiological processes typically feature signal propagation delays on multiple time scales; accord-
Subsampling ingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger
Continuous-time process causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify
Distributed lags relationships among sampling frequency, underlying causal time scales and detectability of causalities.
Results: We reveal complex interactions between the time scale(s) of neural signal propagation and samp-
ling frequency. We demonstrate that detectability decays exponentially as the sample time interval
increases beyond causal delay times, identify detectability “black spots” and “sweet spots”, and show
that downsampling may potentially improve detectability. We also demonstrate that the invariance
of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular
implications for inference of Granger causality from fMRI data.

Comparison with existing methods: Our analysis emphasises that sampling rates for causal analysis of
neurophysiological time series should be informed by domain-specific time scales, and that state-space
modelling should be preferred to purely autoregressive modelling.

Conclusions: On the basis of a very general model that captures the structure of neurophysiological pro-
cesses, we are able to help identify confounds, and offer practical insights, for successful detection of
causal connectivity from neurophysiological recordings.
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1. Introduction signal associated with some underlying biophysiological processes.
Thus, for example, electroencephalography (EEG) records electrical
Neurophysiological recordings are generally obtained by samp- activity arising from ionic current flows in the brain, magnetoen-

ling, at regular discrete time intervals, a continuous-time analogue cephalography (MEG) records the weak magnetic fields produced
by neuronal currents, while functional magnetic resonance imag-
ing (fMRI) measures changes in blood oxygenation level associated
- with neural activity (Logothetis et al., 2001). Even spike train
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Wiener-Granger causality (Wiener, 1956; Granger, 1963, 1969,
1981; Geweke, 1982) - henceforth just Granger causality, or GC
- is a popular technique for inferring directed functional connec-
tivity of the underlying process in the neurosciences (Seth et al.,
2015), from (discrete-time) subsampled' process. Granger causal-
ity is premised on a notion of causality whereby cause (a) precedes
effect and (b) contains unique information about effect. This idea
is commonly (but not exclusively) operationalised within a vec-
tor autoregressive (VAR) modelling framework. At this point, we
recognise that the ascription of a “causal” interpretation to GC is
clearly problematic to some. Our view is that Granger causality
represents a rather than the notion of causality, an avowedly sta-
tistical, as opposed, e.g., to “interventionist” notions (Pearl, 2009).
As such, its strengths and limitations have been widely discussed
[see e.g. Valdes-Sosa etal.(2011) for areview of the issues involved
with regard to biophysical modelling; also Chicharro and Panzeri
(2014)], and we do not enter that debate here. We remark, how-
ever, that Granger causality also has a principled interpretation —
through its intimate relationship (Barnett et al., 2009; Barnett and
Bossomaier, 2013) with the information-theoretic transfer entropy
(Schreiber, 2000; Palus et al., 2001) — as a measure of informa-
tion transfer, and we generally prefer this interpretation (Lizier and
Prokopenko, 2010), particularly with regard to functional connec-
tivity analysis.

Problems associated with Granger-causal inference from sub-
sampled (or otherwise aggregated) time series have long been
noted (Granger, 1969; Sims, 1971; Wei, 1981; Marcellino, 1999;
Breitung and Swanson, 2002). Specifically, it has been observed
that subsampling may distort GC values. This may be considered
especially problematic in two distinct aspects:

(i) Spurious causality, where GC is absent at the finer time scale,
but non-zero for the subsampled process (Comte and Renault,
1996; Renault et al, 1998; Breitung and Swanson, 2002;
McCrorie and Chambers, 2006; Solo, 2007, 2016), and

(ii) Undetectable causality, where GC is present at the finer time
scale, but zero (or too small to detect reliably) for the subsam-
pled process (Barnett and Seth, 2011; Seth et al., 2013; Zhou
etal., 2014).

Subsampling may, in addition, distort the relative strengths of
causalities (Solo, 2016).

Solo (2007, 2016), drawing on previous work by Caines (1976),
distinguishes between the conventional “weak” causality and
“strong” causality (see Section 2.1), and concludes that only strong
causality remains undistorted by subsampling. Seth et al. (2013)
demonstrate that GC inference from fMRI data may be severely
degraded by the sample rates, slow in comparison to underlying
neural time scales, of fMRI recording technologies. More recently,
Zhou et al. (2014) report oscillations in estimated causalities with
varying sampling frequency, with causal estimates almost vanish-
ing at some frequencies, as well as inference of spurious causalities.

Although Granger himself was clearly concerned about the
detectability problem - in Granger (1969) he notes that “[...] a
simple causal mechanism can appear to be a feedback mechanism?
if the sampling period for the data is so long that details of causal-
ity cannot be picked out” - subsequent studies have concentrated

! The term “subsample” refers throughout to sampling of a discrete- or
continuous-time process at regular intervals. We reserve the term “downsample”
for the further subsampling of an already-sampled discrete-time process.

2 Here, by “feedback mechanism”, Granger refers to contemporaneous feedback
between time series [Geweke (1982) terms this “instantaneous feedback”], as
opposed to time-delayed feedback, which in his theory underpins “causal mecha-
nism”; see Section 2.1 for details.

mostly on spurious causality. Here we investigate detectability:
specifically, we examine how the relationship between the under-
lying time scale of causal mechanisms and the sampling time scale
mediates the distortion of (non-zero) Granger causalities, and how
this distortion impacts on statistical inference of Granger causal-
ity from empirical data. We discuss the implications of our results
with regard to the successful inference of Granger causalities at the
structural (neural) level, from neurophysiological recordings.

1.1. Contributions of this study

A significant feature of the neuronal systems underlying such
measurements is the potential range of signal propagation delays
due to variation in biophysical parameters such as axonal length,
diameter, conduction velocity and myelination (Miller, 1994; Budd
and Kisvarday, 2012; Caminiti et al.,, 2013). Here we model the
underlying analogue signal as a stochastic linear autoregression
in continuous time. Unlike prevailing continuous-time stochastic
process models in the neurosciences, our model accommodates
distributed lags on arbitrary time scales, and is thus able to
reflect variability of signal propagation delays. This leads, via con-
sideration of prediction at finite time horizons, to a novel and
intuitive definition of Granger causality at multiple time scales
for continuous-time processes. In contrast to previous work on
continuous-time Granger causality, in which various statistical
(non)causality test criteria have been proposed, our definition
is quantitative, furnishing a Granger-Geweke measure with an
information-theoretic interpretation.

Using discrete-time VAR modelling, we then analyse the prop-
erties of processes obtained by subsampling the temporally
multiscale continuous-time process, and relate the spectral and
causal properties of the subsampled process to those of the under-
lying continuous-time model. Having defined continuous-time,
finite-horizon GC - which represents a target for statistical analysis
- we investigate the extent to which it may be inferred, and in par-
ticular detected, by discrete-time VAR analysis of the subsampled
processes.

We focus on the practical questions of the feasibility and reliabil-
ity of causal inference on sampling frequency and the (dominant)
time scale of causal feedback in the generative process. We inves-
tigate in detail the relationship between sampling frequency and
the quality of causal inference via a fully analytic solution of a mini-
mal, but non-trivial, bivariate model in continuous time, with finite
causal delay.

On the basis of our theoretical and empirical analysis, we iden-
tify critical relationships between causal delay, sampling interval
and detectability of Granger causality. These include exponential
decay of subsampled Granger causalities with increasing samp-
ling interval, resonance between sampling frequency and causal
delay frequency, potential detectability “black spots”, and the exist-
ence of a non-zero optimal sampling interval (i.e., detectability
may sometimes be improved by downsampling). We also discover
a hitherto unremarked non-invariance of finite-horizon/multistep
GC under causal, invertible filtering (in contrast with the known
invariance of single-step discrete-time GC).

Finally, we discuss the implications of our findings for
Granger-causal inference of neural functional relationships from
neurophysiological recordings under various technologies -
including fMRI, which continues to generate controversy.

1.2. Organisation

The paper is organised as follows: in Section 2 we
review essential aspects of the theory of VAR processes and
Granger causality in discrete time. In Section 3 we introduce
CTVAR (continuous-time vector autoregressive) processes as
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