ELSEVIER

Contents lists available at ScienceDirect

Neuroscience Letters

journal homepage: www.elsevier.com/locate/neulet

Research article

Noonan syndrome-associated SHP2 mutation differentially modulates the expression of postsynaptic receptors according to developmental maturation

Jun-Young Oha, Sangmyung Rheeb, Alcino J. Silvac, Yong-Seok Leed, Hyong Kyu Kima,

- ^a Dept of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- ^b Dept of Life Science, College of Natural Science, Chung-Ang University, Seoul 06974, Republic of Korea
- c Integrative Center for Learning and Memory, Dept of Neurobiology, Dept of Psychiatry and Biobehavioral Sciences, Dept of Psychology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- d Dept of Physiology, Dept of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea

HIGHLIGHTS

- A Noonan syndrome-associated mutation in SHP2 increases NMDA receptor expression in premature neurons.
- This mutation increases the size of AMPA receptor clusters in early maturing neurons.
- The SHP2 mutation also increases both the size and the number of AMPA receptor clusters in mature neurons.
- The altered expressions of glutamate receptors by mutant SHP2 can be reversed by inhibiting the MAPK signaling pathway.

ARTICLE INFO

Article history: Received 20 January 2017 Received in revised form 7 March 2017 Accepted 20 March 2017 Available online 31 March 2017

Keywords: AMPA receptor NMDA receptor Developmental disorder MAPK

ABSTRACT

Glutamate is the major excitatory neurotransmitter in the central nervous system, and related signaling involves both AMPA and NMDA subtype receptors. The expression of glutamate receptors is dynamically regulated during development. Recent studies showed that the dysregulation of glutamate receptor expression and function is associated with neurodevelopmental disorders including intellectual disability. Previously, a Noonan syndrome (NS)-associated SHP2 mutation (SHP2 $^{\rm D61G}$) was shown to increase the synaptic delivery of AMPA receptor, subsequently impairing synaptic plasticity and learning in adult mice. However, how the mutant SHP2 affects glutamate receptor expression during development is not known. Here, we found that the SHP2D61G differentially regulates the expression of AMPA and NMDA receptors depending on the stage of neuronal maturation. In cultured neurons (immature stage; DIV 6), overexpression of SHP2D61G significantly increased the average size and the number of NMDA receptorcontaining particles, but not those with AMPA receptors. In early matured neurons (DIV 12), SHP2^{D61G} significantly increased only the average size of AMPA receptor particles, and subsequently increased their number in matured neurons (DIV 18). Importantly, all the changes described above for SHP2^{D61G} neurons were reversed by inhibiting MAPK. These data demonstrate that the increased activation of MAPK signaling pathway by SHP2D61G could deregulate the surface expression of synaptic receptors during neuronal development, which likely contributes to cognitive impairments in NS patients.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Excitatory synaptic transmission in the central nervous system is mainly mediated by two subtypes of glutamate receptors: AMPA

and NMDA receptors. The composition of glutamate receptors at the synapse is dynamically regulated both in developing and in the adult brain. In early developmental stages, NMDA receptors appear first and AMPA receptor levels gradually increase [1]. The composition of NMDA receptors also changes during development. While the GluN2B subtype is highly expressed in early developmental stages, its expression is significantly decreased in the adult [2]. Activity-dependent changes in the surface expression of AMPA

^{*} Corresponding authors.

E-mail addresses: yongseok7@snu.ac.kr (Y.-S. Lee), hkkim69@chungbuk.ac.kr
('H.K. Kim')

receptors are critically involved in synaptic plasticity in multiple brain regions [3,4].

Receptor expression and trafficking can be regulated by multiple signaling pathways. The Ras-MAPK pathway modulates the transport of AMPA receptors to postsynaptic sites [5]. Accordingly, deregulation of Ras-MAPK signaling disrupts synaptic AMPA receptor composition and subsequently impairs synaptic plasticity. Synaptic Ras GTPase-activating protein 1 (SYNGAP1) haploinsufficiency increases Ras activation and enhances AMPA receptor-mediated currents in the developing brain [6]. Previously, we showed that a Noonan syndrome (NS)-associated SHP2 mutation (SHP2D61G) enhances both Ras-MAPK signaling and the expression of postsynaptic AMPA receptors in fully matured cultured neurons [day in vitro (DIV) 21] and in the adult hippocampus [7]. NS is a relatively common developmental disorder associated with cardiac defects, growth delay, facial abnormalities and learning disabilities [8,9]. Although NS-associated mutations can have a large impact on neural development [10], and SHP2 is expressed in both mitotic and postmitotic neurons in the developing brain [11], how NS-associated mutations affect glutamate receptor expression in early developmental states is not known. In this study, we investigated the effect of overexpressing SHP2D61G on the cell surface expression of glutamate subtypes at different stages of development in vitro (DIV 6, 12, and 18). We found that mutant SHP2 increases the level of NMDA receptors at the neuronal membrane surface at early stage, whereas it increases the surface level of AMPA receptors at later stage. Importantly, all these changes in composition of glutamate receptors could be reversed by inhibiting MAPK signaling. Thus, our data imply that NS-associated SHP2 mutations disrupt the expression dynamics of glutamate receptor subtypes during neuronal maturation.

2. Materials and methods

2.1. Neuron culture

Dissociated hippocampal neuron cultures were prepared from 1-day-old rat pups, plated at $\sim \! 10,\!000$ neurons/coverslip, and maintained with Neurobasal-A medium (Invitrogen, Carlsbad, CA) supplemented with B27 (Invitrogen) before use as previously reported [12].

2.2. Sindbis virus

Construction and packaging of the Sindbis virus expressing SHP2^{D61G} has been previously described [7]. After the addition of viral particles to media, cultures were incubated for 11 h for transgene expression.

2.3. Immunohistochemistry and confocal imaging

Immunohistochemistry has been performed as previously described [13]. Briefly, cultured neurons were fixed with 4% paraformaldehyde solution and subjected to immunostaining without permeabilization. The following antibodies were used: polyclonal anti-GluN1 (extracellular) antibody (#AGC-001, alomone labs, Jerusalem, Israel), polyclonal anti-GluA1 (extracellular) antibody (#AGC-004, alomone labs), CyTM3-conjugated goat anti-rabbit IgG antibody (#111-165-003, Jackson ImmunoResearch Lab, West Grove, PA). Images were acquired by using confocal microscope (Zeiss 710, Carl Zeiss, Oberkochen, Germany) and analyzed by using NIH ImageJ software (ver. 1.47v). All procedures of image acquisition and analysis were performed by experimenters blind to experimental condition.

2.4. Drug treatment

Cultured neurons were infected with the Sindbis virus expressing SHP2 D61G at the day indicated, and incubated for an additional 11 hours followed by 10 μ M PD98059 (Tocris, Avonmouth, UK) or dimethyl sulfoxide (DMSO, Sigma–Aldrich, St. Louis, MO) treatment for 1 h. Then, cultures were immediately fixed and subjected to immunostaining.

2.5. Statistical analyses

Statistical analyses were performed with GraphPad Prism 5 software (La Jolla, CA). Unpaired *t*-tests were used to determine statistical significance between groups. Two-way analyses of variance (ANOVA) were used to determine the effect of drug treatment. Error bars indicate the standard error (SEM).

3. Results

3.1. Mutant SHP2 overexpression at DIV 6 increases the surface expression of NMDA receptors

We examined the effect of expressing SHP2^{D61G} on the surface expression of glutamate receptor subtypes in cultured hippocampal neurons at different stages of maturation: DIV 6 for immature, DIV 12 for early mature, and DIV 18 for fully mature neurons [14,15]. We overexpressed SHP2^{D61G} in cultured hippocampal neurons DIV 6 by using a bicistronic Sindbis viral vector co-expressing enhanced green fluorescent protein (EGFP) as a reporter, and analyzed the surface expression of glutamate receptors using the antibodies that detect the extracellular N-terminus for GluN1 and GluA1 for NMDA and AMPA receptors, respectively. The overexpression of SHP2^{D61G} did not affect gross morphology of neurons compared to that of GFP expressing control neurons. In addition, SHP2^{D61G} did not affect the expression of other non-target genes such as Rab-4 or actin (Supplementary Fig. 1). Surprisingly, the surface expression of GluN1 was significantly increased by SHP2D61G expression. Both the size and the number GluN1-containing clusters were significantly increased in SHP2D61G-expressing neurons compared to EGFP-expressing control neurons (Fig. 1A and C; GluN1 particle size: SHP2D61G, $0.32 \pm 0.0 \,\mu\text{m}^2$, n=15 neurons, 1450 μ m of dendrites; EGFP, 0.18 \pm 0.0 μ m², n = 20 neurons, 1803 μ m of dendrites; unpaired t-test, ** p < 0.01; GluN1 particle number per $10 \,\mu\text{m}$: SHP2^{D61G}, 14.62 ± 1.0 , n = 15 neurons, 1450 μm of dendrites; EGFP, 11.31 ± 0.8 , n = 20 neurons, 1803 μm of dendrites; unpaired t-test, * p < 0.05). In contrast, SHP2^{D61G} overexpression did not affect the surface expression of GluA1 at DIV 6 (Fig. 1B and D; GluA1 particle size: SHP2^{D61G}, $0.12 \pm 0.1 \,\mu\text{m}^2$, n = 21 neurons, 1894 µm of dendrites; EGFP, 0.11 ± 0.0 µm², n = 16neurons, 1394 μ m of dendrites; unpaired t-test, p = 0.768; GluA1 particle number per 10 μ m: SHP2^{D61G}, 8.66 \pm 0.8, n = 21 neurons, 1894 μ m of dendrites; EGFP, 10.97 \pm 1.0, n = 16 neurons, 1394 μ m of dendrites; unpaired t-test, p = 0.069). Importantly, the total expression level of GluN1 was not affected by the expression of SHP2^{D61G} (Supplementary Fig. 1).

The majority of the NS-associated mutations in SHP2, including SHP2^{D61G}, are gain-of-function mutations that enhance Ras-MAPK activation [7,16]. Consistently, we found that the SHP2^{D61G}-expressing neurons treated with MAPK/Erk kinase (MEK) inhibitor PD98059 (10 μ M, 1 h) showed unchanged number and size of surface GluN1 particles compared to EGFP controls (Fig. 1E, GluN1 particle size: SHP2^{D61G}, $0.19\pm0.0\,\mu$ m², n=25 neurons, 2378 μ m of dendrites; EGFP, $0.14\pm0.0\,\mu$ m², n=24 neurons, 2007 μ m of dendrites; SHP2^{D61G} + PD98059, $0.09\pm0.0\,\mu$ m², n=21 neurons, 2012 μ m of dendrites; EGFP+PD98059, $0.12\pm0.0\,\mu$ m²,

Download English Version:

https://daneshyari.com/en/article/5738405

Download Persian Version:

https://daneshyari.com/article/5738405

Daneshyari.com