ELSEVIER

Contents lists available at ScienceDirect

Neuroscience Letters

journal homepage: www.elsevier.com/locate/neulet

Research article

Posture and gaze tracking of a vertically moving target reveals age-related constraints in visuo-motor coupling

H. Sotirakis^a, A. Kyvelidou^b, N. Stergiou^{b,c}, V. Hatzitaki^{a,*}

- ^a Motor Control and Learning Laboratory, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki 546 24, Greece
- ^b Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
- c Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA

HIGHLIGHTS

- Age-related constraints on visuo-motor coupling depend on target motion complexity.
- We asked how age affects gaze and posture tracking of vertically moving targets.
- Lower coupling due to age was independent of visual motion complexity.
- Lower sway-target gain reveals age-related constraints in ankle muscles.
- Gaze coupling is affected by age only when tracking complex vertically moving cues.

ARTICLE INFO

Article history: Received 27 December 2016 Received in revised form 14 June 2017 Accepted 15 June 2017 Available online 16 June 2017

Keywords: Sway direction Balance Complexity Aging Sensorimotor

ABSTRACT

Previously we have demonstrated that the effect of aging on posture and gaze active tracking of a visual target moving in the horizontal direction is dependent on target's complexity. In this study, we asked whether a similar phenomenon is present when tracking a visual target moving with varying complexity in the vertical direction. Ten young ($22.98 \pm 2.9 \, \text{years}$) and $10 \, \text{older}$ adults ($72.45 \pm 4.72 \, \text{years}$) tracked for $120 \, \text{s}$, a visual target moving vertically by shifting their bodyweight in the anterior-posterior direction. Three target motions were tested: a simple periodic (sine wave), a more complex (Lorenz attractor) and an ultra-complex random (Surrogated Lorenz attractor) pattern. Cross-spectral analysis revealed lower sway-target coherence as a function of age, regardless of target motion's complexity. This age effect was significant for the sway-target gain but not for the phase index. Gaze-target analysis revealed age related differences only when tracking the more complex targets. Regardless of age, tracking of the complex target was associated with lower cross Approximate Entropy. It is concluded that tracking of visual targets oscillating in the vertical direction reveals age related constraints that are independent of visual motion's complexity. These constraints are evident in the spatial and not temporal aspects of visuo-motor coupling, which suggests the presence of neuromuscular deficiencies in controlling visually guided postural sway in the anterior-posterior direction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Most habitual daily activities, such as gait, standing, jumping or landing, involve a significant amount of sway in both the Medio-Lateral (ML) and Antero-Posterior (AP) direction, while inter-limb load-unload patterns are evident in both directions. Considering the postural control directional constraints, swaying in the sagittal

* Corresponding author. E-mail address: vaso1@phed.auth.gr (V. Hatzitaki). and frontal directions constitutes two separate control mechanisms [1]. On the one hand, swaying in the AP direction induces in-phase motion between the limbs, while the body oscillates as an inverted pendulum around the ankle joint [2]. Therefore, swaying in the AP direction is foremost controlled by the ankle muscles, that is depicted in the well-known ankle strategy [3]. On the other hand, when swaying in the ML direction, the lower limbs are moving in an inter-limb anti-phase pattern, while the hip joint mostly controls the oscillation [4].

While it is generally accepted that ML sway can discriminate old fallers from non-fallers [5], postural sway in the AP direction

needs to be considered as well in order to understand older adults' instability during everyday life activities. Use of the ankle strategy for balancing in the AP direction imposes additional difficulties in older adults, due to a selective, age-related loss of somatosensory afferents and motor units in the distal lower limb muscles [6]. This distal muscle deficiency restricts full range of motion when swaying around the ankle joint. Consequently, older adults shift control to the hip joint during demanding standing postures [7], self-imposed [8] or externally-imposed [9] balance perturbations. This reduced ability to use the ankle musculature to control posture, results in greater instability in the AP than the ML direction [10] and increases proneness to falling [11].

Active postural tracking of visual motion cues is used to study age-related deficits in balance control, perception-action coupling and whole body coordination [12–14]. The same paradigm has also been employed in rehabilitation research to improve static and dynamic balance [13,15] revealing greater benefits for AP than ML postural tracking practice [15]. However, the regularity of the target motions to be tracked, alters the control of posture to a feed-forward mode, very early in practice, leaving limited space for perception based action improvement [16]. In contrast, the unpredictable, complex nature of real life environmental stimuli renders the need for online, feedback based control of postural sway highly important [17]. For this reason, target motions that exhibit patterns of great complexity such as of mathematical chaos and/or random patterns have been employed lately in postural tracking research [13,18]. Tracking of complex targets is a more ecologically valid paradigm [13,18] because this mimics the spatiotemporal characteristics of the real world [17]. Moreover, it was shown that older adults have greater difficulties, as compared to young participants, to couple their posture to complex (i.e. chaotic) target motions, while no age-related differences were evident when tracking periodic (i.e. a sine wave) target motions [13]. However, postural sway in most previous research [12,14] was confined in the ML direction while this was driven by a horizontally moving target resulting in congruent posture-target motions.

In the current study, we explored aging effects on active posture and gaze tracking of complex visual target cues moving in the vertical (up and down) direction. Postural tracking was realized by shifting body weight in the AP direction. The matching directions of sway-target motions were experimentally set based on previous research [18] and pilot testing indicating the presence of an inherent spatial bias to match forward sway with an upward target motion and vice versa. We hypothesized that aging affects the coupling of gaze and AP postural sway to a visual target oscillating vertically while age-related limitations are a function of target's motion complexity.

2. Methods

2.1. Participants

Ten (10) healthy young adults (YA, 22.98 ± 2.95 yrs) and 10 older adults (OA, 72.45 ± 4.72 yrs), free from any neurological or musculo-skeletal impairment, volunteered to participate in the study. Older adults were screened for cognitive and physical function using the MMSE test (>23 for all participants) and TUG test (<12 s) respectively. Participants were informed about the experimental protocol and gave their informed consent to participate in the study. The experiment was performed with the approval of the institution's ethics committee in accordance with the Declaration of Helsinki.

2.2. Apparatus, stimuli and task

Participants were asked to stand on the midline between two adjacent force-plates (Balance Plates 6501, Bertec USA), adjusting their heels and toes in order to equally distribute body weight between the two platforms recording the vertical ground reaction force (Fig. 1). Inter-malleolar distance was fixed at 10% of body height. Two dots were displayed on a black TV screen (LG 60LA620S-ZA, 60 inches) located 1.5 m in front of the participant at eye level. A red dot simulated the target's motion and a yellow one the participant's bodyweight (vertical force) distribution between the platforms in the AP direction. The target (red) dot's range of motion was set to 90% of the participant's bodyweight. An eye tracking system (Dikablis, Ergoneers, 50 Hz) recorded the 2D gaze coordinates after normalizing for head's motion (Nexus 1.8.5, Vicon Motion Systems, Oxford, UK).

Three signals of different complexity were used to simulate the visual target motion (red dot): a) a periodic generated by a sine wave, b) a chaotic generated by the Lorenz attractor and c) a random generated by surrogating the Lorenz signal (for further details see [13]). The performance (yellow) dot was set to move upwards when the participant was leaning forward and downwards when he/she leaned backwards, considering that when an object is far away, it is intuitively perceived to be higher in the field of view [19]. Participants were asked to track (by weight-shifting between platforms) the red dot as accurately as possible with the yellow one for 120s. A 20 s practice trial was given for familiarization with the target. Experimental conditions were randomised to account for order effects.

2.3. Data analysis

Spectral coherence was used to test the linear relationship between the performance and target signals in the frequency domain. Analysis involved a qualitative description of the group averaged performance-target coherence, phase and gain plots in the 0–1 Hz frequency band and a quantitative comparison of the same parameters at the dominant target frequency (0.244 Hz). Gain was calculated as an amplitude-coupling index while phase illustrated the temporal lag between signals, in degrees. The cross-Approximate Entropy (cross-ApEn) was calculated as an index of co-joint regularity between the target and performance signals in the non-linear space [18].

Prior to statistical analysis, the one-sample Kolomogorov-Smirnov test was used to test for violations of the normality assumption in each dependent measure. The test revealed that at least one dependent measure in each factor level was not normally distributed. For this reason, non-parametric statistics were employed. Specifically, the Friedman's two-way ANOVA for related samples was used to compare the performance-target coupling measures across experimental conditions and the Mann-Whitney *U* test to compare the same metrics between groups. The Wilcoxon Signed Ranks Test was employed for post hoc pairwise comparisons between levels after adjusting p for multiple comparisons (Bonferroni adjustment).

3. Results

3.1. Sway-target coupling

The group averaged coherence curves revealed lower sway-target coherence for the OA than the YA group in all target conditions (Fig. 2). This difference was statistically confirmed by the coherence value at $0.244 \, \text{Hz}$ (Table 1) (periodic: U = 15.0, p = 0.005, chaotic: U = 24.0, p = 0.017, random: U = 9.0, p = 0.001). In addition,

Download English Version:

https://daneshyari.com/en/article/5738617

Download Persian Version:

https://daneshyari.com/article/5738617

<u>Daneshyari.com</u>