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A B S T R A C T

Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are

associated with a lag of onset that can prolong distress and impairment for patients, and their

antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act

primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in

the central nervous system, and glutamate and its cognate receptors are implicated in the

pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid

and robust antidepressant effects of the N-methyl-D-aspartate (NMDA) antagonist ketamine were first

observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have

demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown

more favorable characteristics. This article reviews the clinical evidence supporting the use of novel

glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA

receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-

specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-

site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators

(AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate

receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these

include a-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3

negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for

potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid

system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
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1. Introduction

Depression directly affects the brain and periphery and is
associated with diverse other medical comorbidities due its
systemic deleterious effects. The ‘‘monoamine hypothesis’’ of
depression – which was developed after observing the pharmaco-
logical effects of early drugs for depression – is no longer the only
model capable of explaining the mechanism of action of
antidepressants or for studying the underlying pathophysiology
of depressive episodes in mood disorders.

Currently available conventional antidepressants unfortunately
have low rates of treatment response; while one-third of patients
with depression will respond to their first antidepressant,
approximately two-thirds will respond only after trying several
classes of antidepressants (Trivedi et al., 2006). Furthermore,
therapeutic approaches must be considered not only in the context
of treating acute episodes, but for relapse prevention as well as
intervention in the early phases of illness. With regard to
conventional antidepressants, few targets besides the mono-
amines and the hypothalamic pituitary adrenal (HPA) stress axis
have been identified as key candidates; nevertheless, the interac-
tion between organs, proteins, hormones, and several comorbid
diseases remains complex, and results of studies investigating
these targets are preliminary. Thus, there is a strong need to
identify and rapidly test novel antidepressants with different
biological targets beyond the classic monoaminergic receptors and
their downstream targets; these agents would also be expected to
act faster in a larger percentage of individuals. However, in recent
years the pharmaceutical industry has been investing less in
psychiatry and mood disorders as a therapeutic area. This review
discusses some of the striking recent advances in the development
of novel, rapid-acting antidepressants as well as the potential
issues and pitfalls related to research in this field. We also present
an overview of the most promising targets and approaches as well
as ideas for next steps for drug development.

2. Rapid onset of antidepressant action

As noted above, currently available monoaminergic antide-
pressants are associated with a delayed onset of action of several
weeks, a latency period that significantly increases risk of suicide
and self-harm and is a key public health issue in psychiatric
practice (Machado-Vieira et al., 2009c). This concept of a latency
period before achieving antidepressant efficacy is widely accepted

despite the fact that very few trials have evaluated efficacy
outcomes on a daily basis during the first week of treatment with
conventional antidepressants. High rate of placebo response has
also been problematic when evaluating new antidepressants. As a
result, much remains unknown about the actual timing of
antidepressant efficacy (that is, early improvement) for any class
of standard antidepressants (Katz et al., 2004; Machado-Vieira
et al., 2010); most of these data come from post-hoc analyses.

Nevertheless, several clinical studies suggest that rapid
antidepressant effects are achievable in humans. This lends an
additional urgency to the development of new treatments for
depression that target alternative neurobiological systems, par-
ticularly for those subgroups of patients who do not respond to any
currently available pharmacological agents. New therapeutics
could significantly lower morbidity and mortality for both major
depressive disorder (MDD) and bipolar disorder (BD) and
commensurately minimize or prevent disruption to personal,
family, and occupational life and functioning as well as lower risk
of suicide. In addition, the neurobiological impact of cumulative
exposure to depression would be minimized, which might result in
less chronicity and fewer recurrences. It should also be noted that
new insights into the potential association between early
improvement and long-term outcomes would be helpful tools in
clinical practice; knowledge gleaned from such studies could be
used in the context of personalized medicine. Indeed, identifying
new targets for rapid antidepressant efficacy seems to be a relevant
approach not only in treatment-resistant cases but also for the
initial treatment of patients who respond well to conventional
monoaminergic antidepressants and are, as a result, expected to
wait several weeks for therapeutic effects to manifest. Neverthe-
less, developing agents that exert rapid antidepressant effects
remains difficult. Perhaps the most significant challenge is dealing
with the gap between rapid antidepressant response, long-term
treatment, and maintenance therapy after response and remission.

In the context of developing novel therapeutic targets for
depression, glutamate and other ionic channel receptors seem to
induce faster biological effects at intracellular downstream targets
and currently represent the most promising targets for drug
development. Rapid improvement is a key paradigm for achieving
fast relief of symptoms and, in some cases, preventing new
episodes when prodromal symptoms are observed; this paradigm
is similar to that seen for other medical illnesses such as asthma,
migraine, and atrial fibrillation. Below, we discuss the concept of
rapid antidepressant action and present findings and perspectives
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