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Spatial analysis of fatal and injury crashes in Pennsylvania
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Abstract

Using injury and fatal crash data for Pennsylvania for 1996–2000, full Bayes (FB) hierarchical models (with spatial and temporal effects and
space–time interactions) are compared to traditional negative binomial (NB) estimates of annual county-level crash frequency. Covariates include
socio-demographics, weather conditions, transportation infrastructure and amount of travel. FB hierarchical models are generally consistent with
the NB estimates.

Counties with a higher percentage of the population under poverty level, higher percentage of their population in age groups 0–14, 15–24, and
over 64 and those with increased road mileage and road density have significantly increased crash risk. Total precipitation is significant and positive
in the NB models, but not significant with FB. Spatial correlation, time trend, and space–time interactions are significant in the FB injury crash
models.

County-level FB models reveal the existence of spatial correlation in crash data and provide a mechanism to quantify, and reduce the effect
of, this correlation. Addressing spatial correlation is likely to be even more important in road segment and intersection-level crash models, where
spatial correlation is likely to be even more pronounced.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many factors affecting crashes operate at a spatial scale
(e.g. land-use policy, demographic characteristics and high-
way infrastructure functional class). It is therefore reasonable
to explore the use of spatial models of crash occurrence to better
understand the implications of these policies.

In most roadway accident studies, crashes are grouped in
spatial units that range from intersection or road section level
to zip code or county level (e.g. Amoros et al., 2003; Miaou
et al., 2003; Noland and Oh, 2004; Noland and Quddus, 2004;
MacNab, 2004). One concern with these studies is the effect
of spatial correlation (i.e. the spatial dependence among obser-
vations), which produces higher variance of the estimates and
therefore, underestimated standard errors.

Recent developments in spatial modeling techniques have
enabled researchers to investigate important issues related to
risk estimation, unmeasured confounding variables, and spa-
tial dependence (Richardson, 1992). An important advantage of

∗ Corresponding author. Tel. +1 814 865 9431.
E-mail address: ppj2@engr.psu.edu (P.P. Jovanis).

spatial models is that spatial effects may reflect unmeasured con-
founding variables. This is particularly useful for unmeasured
confounders that vary in space like weather, population, and
others. More important yet, “the methods also facilitate spatial
smoothing and data pooling when regions under investigation
involve small-population areas”, MacNab (2004). Here the term
‘small-population areas’ refers to areas that present very few
events, given a rare-event phenomenon, for example roadway
crashes.

Previous research has dealt with the spatial component of
road crashes in different ways. Crashes have been modeled as
point events (e.g. Levine et al., 1995; Jones et al., 1996), while
others have modeled road crashes at different area levels, rang-
ing from road sections to local census tracks or counties (e.g.
Shankar et al., 1995; Amoros et al., 2003; Miaou et al., 2003;
Noland and Oh, 2004; MacNab, 2004).

Honolulu census tract data have been used (Levine et al.,
1995b) in a continuous model for predicting crashes. Analysis at
the “ward” (census track) level has been conducted (Noland and
Quddus, 2004) for fatalities, serious injuries, and slight injuries
using four different categories of predictor variables: land-use
indicator variables (employment and population density), road
characteristics, demographic characteristics (age cohorts), and
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traffic flow proxies (proximate and total employment). Country-
level data for Illinois (Noland and Oh, 2004) were used to
estimate the expected number of crashes using infrastructure
characteristics and demographic indicators as independent vari-
ables in a negative binomial (NB) model. Limitations of these
studies are the use of proxy variables for traffic flow estimation
and the lack of spatial correlation analysis. An additional paper
(Amoros et al., 2003) developed NB models at county level in
France that included interactions between road type and county.

Poisson-based full Bayes (FB) hierarchical models of county-
level fatal (K), incapacitating (A), and non-incapacitating (B)
injuries were estimated using both frequency and rate for the
state of Texas (Miaou et al., 2003). Conditional auto-regressive
model (CAR) was used to model spatial correlation and Markov
Chain Monte Carlo (MCMC) was used to sample the posterior
probability distribution. The main limitation of this paper is the
use of the surrogate variables: percent of time that the road is
wet, sharp horizontal curves, and roadside hazards. These pre-
dictor variables were estimated by proportions of crashes. For
example, for percent of time that the road is wet, the variable
was estimated by dividing the number of crashes that occurred
under wet pavement by the total number of crashes. These esti-
mators are clearly biased in the direction of the effect. Given the
poor definition of contributing factors in the model, it is likely
that the spatial correlation is overestimated. In a recent paper,
Miaou and Song (2005) used the same approach and data in the
ranking of sites for engineering safety improvements.

The adoption of the FB hierarchical approach by Miaou is
an important advance in model estimation and is a departure
point for this paper. The purpose of this research is to develop
spatial models of road crash frequency for the State of Pennsyl-
vania at the county level while controlling for socioeconomic,
transportation-related, and environmental factors. The results
from FB hierarchical spatial models are compared with the more
traditional approach using an NB distribution to model crash fre-
quency. Particular attention is paid to the inclusion of weather as
a predictor and the search for spatial correlation among neigh-
boring counties.

2. Methodology

2.1. The Poisson and negative binomial distributions

When data arise as counts, the Poisson distribution is typically
used to model them. Traffic crashes are a clear example of count
data, therefore, a Poisson distribution is a useful stating point
(see for example Jovanis and Chang, 1986; Shankar et al., 1995).
An important characteristic of the Poisson distribution is that its
variance is equal to its mean. Several authors (e.g. Shankar et
al., 1995; Noland and Quddus, 2004) have argued that vehicle
crashes are better represented by an NB distribution, which is a
count distribution generated by a Poisson process with variance
greater that the mean (see for example, Hamed et al., 1998;
Hamed,1999).

Several goodness-of-fit measures have been proposed for
this kind of model including the Poisson R2, R2

P, and the
Freeman–Tukey R2, R2

PFT (Fristrøm et al., 1995). Another mea-

sure of goodness-of-fit uses the overdispersion parameter α of
the NB model (Miaou, 1996). NB models are estimated using R
statistical Software (R Development Core Team, 2004).

2.2. Spatial modeling using full Bayes hierarchical
approach

Many spatial modeling techniques may be developed within
a Bayesian approach because of its flexibility in structuring
complicated models, inferential goals, and analysis (Miaou et
al., 2003). Bayesian inference has been used in the past in
disease mapping and ecological analysis and just recently, it
has been applied to crash modeling (e.g. Miaou et al., 2003;
MacNab, 2004; Miaou and Song, 2005). For a detail description
of Bayesian inference, see Gelman et al. (2003).

The problem of group estimation, namely estimating the
parameters of a common distribution thought to underlay a
collection of outcomes for similar types of units, has moti-
vated much research in Bayesian statistics. One seeks to make
conditional estimates of the true outcome rate in each unit of
observation (e.g. fatal crashes rate by county), given the param-
eters of the common density. Such estimation for sets of similar
units is known as ‘hierarchical modeling’ because of its condi-
tioning on higher stage densities (Congdon, 2003). At the first
stage, the observed counts are modeled as a function of area-level
summaries such as risk or relative risk. At the second stage, a
joint distribution is specified for the collection of these risks
as a function of explanatory variables. The second stage distri-
bution depends on unknown parameters and these are assigned
a (hyper) prior distribution at the third stage (Wakefield et al.,
2000).

In the case of this study, the model developed by Besag et al.
(1991) is the base of the formulation used, as shown in Eqs. (1)
and (2):

yi ∼ Poisson(eiθi) (1)

where yi is the number of fatal crashes in county i, θi the risk in
county i, and ei the exposure in county i; in this case the expo-
sure is the total daily vehicle-miles traveled (DVMT) by county.
DVMT was also included as explanatory variable to account
for possible non-linearity between crash frequency and DVMT.
This is the first stage in the model. The log risk is modeled
as:

log(θi) = α + x′
iβ + vi + ui (2)

where xi represents a vector of explanatory variables, or covari-
ates, β a vector of fixed effect parameters, vi the uncorrelated
heterogeneity or unstructured error and ui the correlated hetero-
geneity or spatial correlation. The last two variables are known
as random effects, therefore, this kind of model is commonly
known as a mixture model where fixed and random effects are
combined.

In the third stage, a uniform prior distribution is assigned to α

and a highly non-informative normal distribution is assigned to
the β’s with mean 0 and variance 1000 corresponding to vague
prior beliefs, given the scale of the covariates. On the other hand
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