

Research in Microbiology 168 (2017) 244-254

www.elsevier.com/locate/resmic

Original Article

Anti-pathogenic and probiotic attributes of *Lactobacillus salivarius* and *Lactobacillus plantarum* strains isolated from feces of Algerian infants and adults

Hamza Ait Seddik ^{a,b}, Farida Bendali ^a, Benoit Cudennec ^b, Djamel Drider ^{b,*}

^a Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
^b Univ. Lille, INRA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 — ICV — Institut Charles Viollette, F-59000 Lille, France

Received 24 July 2016; accepted 23 December 2016 Available online 16 January 2017

Abstract

Sixty-seven (67) lactic acid bacteria (LAB) isolates belonging to *Lactobacillus* genus were isolated from human feces and tested for their auto-aggregation and cell surface hydrophobicity in order to establish their adhesion capabilities, a prerequisite for probiotic selection. Strains with the upmost auto-aggregation and cell surface hydrophobicity scores were identified by MALDI-TOF spectrometry and 16S rDNA sequencing as *Lactobacillus plantarum* (p25lb1 and p98lb1) and *Lactobacillus salivarius* (p85lb1 and p104lb1). These strains were also able to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells, with percentages ranging from 4.68 to 9.59%. They displayed good survival under conditions mimicking the gastrointestinal environment and remarkably impeded adhesion and invasion of human Caco-2 by *Listeria monocytogenes* and Enteropathogenic *Escherichia coli*. It should also be noted that *Lb. plantarum* p98lb1 was able to reduce *in vitro* cholesterol concentration by about 32%, offering an additional health attribute.

 $\ensuremath{\mathbb{O}}$ 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Human feces; Lactobacillus; Probiotics; Anti-invasion; Anti-adhesion properties; Cholesterol lowering

1. Introduction

The intestinal microbiota is considered an important source of potentially beneficial microbes usually referred to as probiotics which, according to the FAO/OMS definition, are live microorganisms conferring heath benefits to the host when they are administered in adequate amounts [1]. Probiotic health attributes have been reported in many studies and reviews, arousing great interest in the scientific community [2–4]. The wide applications anticipated for probiotics could explain the increased interest in isolating additional strains from different sources around the world and then characterizing them for their

E-mail addresses: hamzaseddik1@gmail.com (H. Ait Seddik), kamelea03@hotmail.com (F. Bendali), Benoit.Cudennec@univ-lille1.fr (B. Cudennec), djamel.drider@univ-lille1.fr (D. Drider).

health-promoting issues. Bacterial adhesion to epithelial cells and mucosal surfaces is a key element in selection of probiotics [5,6]. Adhesion to intestinal cells is predicted to have lasting beneficial effects upon human health, i.e. exclusion of pathogens, immunomodulation and production of beneficial bacterial molecules [7]. Bacterial adhesion can be assessed using in vitro models such as intestinal epithelial cell lines (e.g., Caco-2), intestinal mucus and human intestinal tissues [8]. Nonetheless, adhesion properties appear to be species- and even straindependent [9]. Dimitrov et al. [10] studied adhesion of a set of lactobacilli that included strains of Lactobacillus gasseri G7, Lactobacillus plantarum F1 and Lactobacillus helveticus AC to Caco-2 cell. Those authors [10] elucidated cell wall protein mechanisms and cell-wall-bonded exopolysaccharides for Lactobacillus delbrueckii subsp. bulgaricus B14. Antikainen et al. [11] categorized these adhesion proteins into five classes, among them anchorless housekeeping proteins, surface layer

^{*} Corresponding author.

proteins, LPXTG-motif proteins, transporter proteins and 'other' proteins. Bacterial auto-aggregation and cell surface hydrophobicity were shown to be involved in the adhesion and colonization capacities of probiotics [12,13], delineating the importance of these functions as criteria for selecting novel probiotic strains [14,15]. Auto-aggregation influences probiotic adhesion to the intestinal epithelial cells, while their coaggregation with pathogens could prevent colonization in the gut by these detrimental bacteria [16].

In this study, 67 *Lactobacillus* isolates from human feces collected in Bejaia, a city in the north of Algeria, were screened for their cell surface properties, including autoaggregation and hydrophobicity. This study led to isolation and identification of *Lb. plantarum* (strains p25lb1 and p98lb1) and *Lactobacillus salivarius* (strains p85lb1 and p104lb1) as strains with the highest auto-aggregation and cell surface hydrophobicity scores. Moreover, these strains were also able to inhibit adhesion and invasion by pathogenic bacteria such as *Listeria monocytogenes* and Enteropathogenic *Escherichia coli* (EPEC). In addition to these functions, the *Lb. plantarum* p98lb1 strain displayed *in vitro* cholesterol lowering capabilities of about 32%.

The data gathered from this study argue for exploitation of novel probiotic sources worldwide and provide insight into the anti-adhesive properties of lactobacilli and their beneficial effects for probiotic applications.

2. Materials and methods

2.1. Lactobacillus strains isolation from human feces

Feces from Algerian infants and adults were collected at Bejaia Hospital (Algeria) and serially diluted in saline water (8.5 g·L $^{-1}$ NaCl), inoculated into MRS agar (Sigma—Aldrich, Steinheim, Germany) containing L-cysteine hydrochloride (0.05% [w/v], Sigma—Aldrich), and then incubated at 37 °C for 48 h. The obtained colonies were subcultured in MRS agar and analyzed for Gram staining and catalase activity. Bacterial isolates that were Gram-positive and devoid of catalase activity were stored at -20 °C in MRS broth containing 30% (v/v) of glycerol (Sigma—Aldrich) until further characterization.

In this study, *E. coli* ATCC 25922, enteropathogenic *E. coli* (EPEC) kindly provided by Dr. Stéphanie Blanquet (Université d'Auvergne, France), *Staphylococcus aureus* ATCC 25923, *Listeria innocua* (*L. innocua*) CIP 74915 and *L. monocytogenes* 162 of food origin, kindly provided by Dr. Marie France Pilet (Oniris, Nantes, France) were used as indicator strains. These strains were grown in brain-heart infusion broth (BHIB, Sigma—Aldrich) at 37 °C, and kept under appropriate conditions until further use.

2.2. Screening of lactobacilli for auto-aggregation and cell surface hydrophobicity properties

Aggregation assays were performed as described by Kos et al. [17]. Briefly, *Lactobacillus* strains were grown for 18 h at 37 °C in MRS broth. After centrifugation ($8000 \times g$, 10 min),

the pellets were recovered, washed twice with sterile 0.01 M phosphate-buffered saline (PBS, pH 7.2) and re-suspended at $10^8~\rm CFU\cdot mL^{-1}$ in the same buffer. Then, cell suspensions were mixed by vortexing and auto-aggregation was determined after 2 h of incubation at 37 °C. Subsequently, an aliquot (1 mL) of these suspensions was carefully removed from the upper suspension and its absorbance was read at $600_{\rm nm}$ on a spectrophotometer (Specord®, Shimadzu, Germany) [17]. The auto-aggregation percentage was calculated using the following formula: auto-aggregation (%) = $1-(A_t/A_0)\times 100$, where A_t represented the absorbance at time t=2 or 4 h and A_0 the absorbance at t=0 h.

Cell surface hydrophobicity was determined using the microbial adhesion to hydrocarbon method (MATH) described by Rosenberg et al. [18]. Bacteria from overnight culture were harvested by centrifugation (8000 \times g, 10 min), washed twice with PBS (pH 7.2) and re-suspended in the same buffer at 10⁸ CFU⋅mL⁻¹. Absorbance of the cell suspension was measured at 600_{nm} (A₀). One milliliter of xylene was added to 3 mL of cell suspension and mixed by vortexing for 2 min. The suspension was incubated at room temperature to allow phase separation. The aqueous phase was removed and its absorbance at 600_{nm} (A₁) was read. The percentage of bacterial adhesion to solvent was calculated using the following formula: hydrophobicity (%) = $1 - (A_1/A_0) \times 100$, where A_1 represented the absorbance of the aqueous phase after twophase system separation and A0 the absorbance of the initial bacterial suspension [18].

2.3. Molecular identification by MALDI-TOF spectrometry and 16S rDNA sequencing of the most relevant Lactobacillus strains

The selected strains were identified using MALDI-TOF spectrometry. To this end, strains were grown in MRS agar for 48 h and pure colonies were deposited on a ground steel Maldi target. The spots (three spots for each isolate) were overlaid with 1 µl of 70% formic acid solution (Sigma--Aldrich), dried at room temperature, then overlaid again with 1 μl of matrix solution (α-cyano-4-hydroxycinnamic acid [HCCA]; Bruker Daltonics) dissolved in 50% (v/v) acetonitrile (Sigma), 47.5% (v/v) water, and 2.5% (v/v) trifluoroacetic acid (Sigma) and allowed to dry prior to analysis using the Maldi Biotyper. The target was analyzed using the Maldi-Tof MS spectrometer Autoflex speed TM (Bruker Daltonics, Bremen, Germany) in a linear positive mode. Mass spectra were analyzed in m/z range of 2000 to 20,000 and a bacterial test standard (BTS, Bruker Daltonics) was used for instrument calibration according to Bruker's recommendations. The determination of m/z ratios of detected ions in each Maldi-MS profile was performed under Flex analysis 3.4 for comparison with data base. The manufacturer-recommended identification scores used were: 2.00–3.00, high-confidence identification; 1.70-1.99, low-confidence identification; 0.00-1.69, no organism identification possible.

Total DNA was extracted using the Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA). For 16S

Download English Version:

https://daneshyari.com/en/article/5739794

Download Persian Version:

https://daneshyari.com/article/5739794

<u>Daneshyari.com</u>