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The purpose of this paper is to set up a mathematical framework that risk assessors and regulators could use to
quantify the “riskiness” of a particular recommendation (choice/decision). The mathematical theory introduced
here can be used for decision support systems. We point out that efficient use of predictive models in decision
making for food microbiology needs to consider three major points: (1) the uncertainty and variability of the
used information based on which the decision is to be made; (2) the validity of the predictive models aiding
the assessor; and (3) the cost generated by the difference between the a-priory choice and the a-posteriori
outcome.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Predictive food microbiology focuses on the responses of foodborne
bacteria to their environment. Sufficiently accurate predictions on bac-
terial growth and survival can reduce the need for microbiological test-
ing of food, making product formulation and risk assessment much
cheaper and more efficient, and ultimately improving microbiological
food safety (Ross and McMeekin, 2003). The knowledge gained in the
c.a. 30 years-long history of the discipline has been implemented in
practical decision-supporting software packages, to be used by a range
of stakeholders, including industrialists, academicians and regulation
officers. Various predictive models are available for different foodborne
pathogenic as well as spoilage organisms to help quantitative microbial
risk assessment of food (Whiting and Buchanan, 2001; Koutsoumanis et
al., 2016).

Practical users face the question to what extent they can rely on
the predictions generated by predictive tools, for which one of the
most used examples is the ComBase Predictor (ComBase, 2016).
Overestimating the growth potentials of pathogenic bacteria can result
in food waste and economic loss, while underestimation can have even
more serious health- or reputation-related implications (Guillier et al.,
2016). Predictionerrors canoriginate from(i) biological andenvironmen-
tal variability; (ii) the uncertainty of the information (observations) on
which the predictions are based; and (iii) the inaccuracy of the mathe-
matical models and assumptions used.

Predictive models are predominantly based on simplifying assump-
tions and observed data. There is no recipe or algorithm to decide
whether those simplifying assumptions are valid or allowed; they are
accepted if observations validate them (empirical considerations) and
they can be embedded in fundamental theories of science (mechanistic
reasons). Empirical models are less applicable for extrapolation than
mechanistic ones. However, to some degree, all predictions are extrap-
olations. Mathematical models exist in an ideal Platonian space, from
which the applications to future scenarios are inferences. The experi-
mental conditions of the observations, on which the models are based,
can rarely be repeated exactly, due to the “panta rhei” Heraclitean prin-
ciple: “One cannot step into the same water twice”.

It is relatively easy to test whether a prediction is a mathematical ex-
trapolation; i.e. whether it is outside the range of observations (Baranyi et
al., 1999). It ismuchmore difficult to decidewhether, for instance, a set of
measurements on a proxy organism can be applied to the “real one”. An
example for this is applying observations on Listeria innocua to infer the
kinetics of Listeria monocytogenes. Similarly: are certain environmental
conditions like food structure, native flora, processing background, etc.
negligible? It is also anopenquestionwhat details of experimental results
should be used for a practical predictive tool. Namely, the higher its reso-
lution, i.e. the more explanatory factors and in wider ranges are consid-
ered, the less robust the predictive model will be, more pruned to be
affected by randomerrors. Finding a trade-off between resolution and ro-
bustness is a central question in predictivemodelling (Ratkowsky, 1993).

While acknowledging the importance of such concerns, decision
makers may come across even more complex questions when using
predictive packages. Should a decision solely rely on predictions,
which normally represent the expected value of a response variable in
question? A simple method to correct predictions by a “bias factor”
was proposed by Ross (1996), refined by Baranyi et al. (1999). It is
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evident, for example, that conservative (cautious) decisions are useful
when the price of the prediction error is high. In fact, as we show
below, one faces three major challenges when making decisions based
on microbial risk assessment:

i) The accuracy (uncertainty and variability) of observations used
for developing the predictive model is not necessarily known or
easy to estimate;

ii) Available software packages are primarily based on empirical
models and can generate markedly different predictions espe-
cially close to extrapolation regions;

iii) It is not straightforward to decide what measure of dissimilarity
between prediction and actual response should be used. The cost
(either measurable financially, or in damage of reputation, or se-
verity of illnesses, or in decrease of influence or power, etc.)
assigned to their individual components are frequently on mixed
and asymmetric scales, which makes a combined optimization
difficult.

In this paper we explain, backed by examples, why predictive
models should be used in combination with a cost-benefit assess-
ment. We point out that a correct strategy does not necessarily
focus on the most probable event, but on mitigating the implications
of wrong decisions that can randomly and/or sooner or later inevita-
bly occur.

2. Theory and examples

It is commonly accepted and frequently cited (WHO/FAO, 2009) that
risk assessment consists of four steps: hazard identification, dose-re-
sponse assessment, exposure assessment and risk characterisation. Mi-
crobial risk itself is defined as the probability of an event and the
severity of its known or potential adverse health effects. Therefore,
mathematically, risk is a two dimensional vector variable assigned to
an event. Its components are the probability and the severity of the
event. Sometimes the product of the two is called the risk, which can
be considered as the “expected severity” of the event. The severity can
be quantified by various ways: e.g. number of death/hospitalization;
missed working hours; cost of treatments, etc.

The focus of this paper is not the above interpreted risk, assigned
to an a-posteriori event, but the risk of an a-priory decision, that we
also call choice or bet in what follows. We will suggest and exempli-
fy a formal mathematical definition for the risk of a decision. Its con-
struction aims at the use of predictive microbiology in decision
making, when for example a risk assessor needs to provide a recom-
mendation or a regulatory unit or a health worker needs to choose:
against what possible future events should be protective measure-
ments introduced.

Assume that a set of information quantified by an x random variable
(an n-dimensional vector) is available on the past behaviour and the
present state of a system. A decision maker needs to put forward a
guess b (also called choice or “bet” in what follows) on a future event
in the system, which is quantified by an m-dimensional random vari-
able, y. To help the decision, an y≈ g(x)mapping or algorithm (the pre-
dictor), based on a mathematical model, is available that allows the
estimation of the y outcome. Our focus is the error thatb is not necessar-
ily equal to y. The objective is to find a bopt, the “best bet”, which is op-
timal from a certain point of view.

Obviously, any b choice, if based on a reasonable strategy, should
depend on (i) the available information expressed by x (measure-
ments, observations, with their probability distributions); (ii) the
way how the y outcome and its probability distribution depends on
the past and present of the system (this is approximated by the
g(x) predictor); (iii) the implications if the outcome is different
from the guessed one.

Therefore, the typical elements of our task are:

i) Quantify the uncertainty of the information available;
ii) Determine a mathematical model to estimate the outcome y as a

function of the past behaviour and the present state of the
system;

iii) Assign cost to the error generated by the difference between b,
the a-priori decision (bet) and y, the in-fact to be happening a-
posteriori outcome.

All these variables could also contain time-dependent components,
in which case they are stochastic processes (dynamic, x(t), b(t), y(t)
variables rather than just static ones). The available information can
be a collection of measurements such as data on (possibly time-depen-
dent) bacterial concentrations, or growth/death rates as a function of
environmental factors.

The predictor g(x) is unbiased if the expected value of g(x) is equal to
the expected value of y. A well-known example for such predictor is
when x is a set of independent, identically distributed measurements
and the g(x)mapping is the procedure of taking their arithmetical aver-
age. A reasonable b bet on the result of the next measurement could be
this arithmetical average. Note that this number may not be measured,
therefore the bet could always be wrong, if for instance the set of possi-
ble outcomes consist of discrete values that do not include the calculat-
ed average; still the expected difference between the bet and the
outcome could be smaller than betting on an outcome that can really
occur.

For an example, for the simple m= 1 case, consider a “head or tail”
trial, with not necessarily equal probabilities for the two possible out-
comes, scored by 0 and 1, respectively.What is the best bet for the result
of the next toss if the cost of a wrong bet depends on the difference be-
tween the bet and the actual outcome? Note that the decision can nom-
inate any real number, not only 0 or 1.

We will see that if the aim is to minimize the expected cost of the
error and this cost is proportional to the squared distance between the
bet and the outcome, then the “best bet” is the average of the so-far ob-
served experimental results. So though this strategy can never bring a
correct prediction, since the decision is a number between 0 and 1,
while a single outcome is either 0 or 1; still, in the long run, it leads to
minimizing the loss due to wrong decisions.

That g(x) should be unbiased, i.e. the expected value of g(x) should
be equal to the expected value of y, is a rather trivial requirement. Could
we impose more restrictions on g? For example, what would be the
“best bet” if we introduced asymmetric penalties for under- and over-
estimations?

Below we define the risk of a decision. Let b be a bet on the y out-
come. Introduce a

c b; yð Þ : Rm � Rm⇒R

cost function to quantify the price we would pay for a decision error,
where R is the set of real numbers and Rm is the set of m-dimensional
vectors with components from R. Define the risk of decision b as the ex-
pected cost caused by the difference between b and the outcome y,
where the expectation (an integral) is calculated as y runs through its
possible values with py probability distribution:

Risk bð Þ ¼ E cb; yð Þ ¼ ∫ c b; yð Þdpy

We claim that this definition for the risk of the decision b is suitable
for our purposes. The same idea is used for example in pattern recogni-
tion (Devroye et al., 1996).

Fig. 1 demonstrates well the main point this paper addresses; while
traditional microbial risk assessment focuses on the risk of future events,
we concentrate on the risk of a decision to be taken before those events.
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