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1. Introduction

The ecological resilience perspective is an emerging approach
for understanding the dynamics of social-ecological systems
(Holling, 1973; May, 1977; Scheffer et al., 2001; Folke, 2006;
Menck et al., 2013; Meyer, 2016). While the stability point of view
emphasizes the equilibrium and the maintenance of present state,
the resilience point of view focus on shifts between alternative
basins of attraction, thresholds, uncertainty and unexpected
disturbances. External forces or random events may cause state
variable perturbations that drive a nonlinear system, which is
initially near a stable state, to enter an undesirable basin of
attraction. In this case, the resilience of the original steady state is
related with the size and shape of its basin of attraction, and the
capacity of the system to persist in this basin of attraction when
subject to state variable perturbations. Three different indicators
are established in the literature as measures of the resilience of a

stable state with respect to state variable perturbations (Walker
et al., 2004; Mitra et al., 2015): latitude, which is a measure of the
volume of its basin of attraction; precariousness, which is related
with the minimal state space disturbance needed to drive the
system outside its basin of attraction; and resistance, which is a
measure of the deepness of its basin of attraction.

On the other hand, changes in system parameters occur in a
slow time scale, due to evolutionary forces or by modifying the
intensities of interactions and forces governing such system. In this
case, parameters modify the resilience of the system with respect
to state variable perturbations. Further, when parameters do
change enough, the system may undergo several bifurcations and
the phase portrait may change substantially. In this case, one can
measure the resilience of the system with respect to parameters
changes as the distance to the threshold values for which
bifurcations occur. As a consequence of such bifurcations, an
undesirable alternative stable state may be created, and its basin of
attraction can be achieved by state variable perturbations, as
commented above. A more dramatic outcome happens when
parameters changes lead to loss of stability of the original steady
state or even its disappearance. In this case, a regime shift occurs
and the system moves to another state. Now, the question of
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A B S T R A C T

In this paper we propose an ecological resilience point of view on cancer. This view is based on the

analysis of a simple ODE model for the interactions between cancer and normal cells. The model presents

two regimes for tumor growth. In the first, cancer arises due to three reasons: a partial corruption of the

functions that avoid the growth of mutated cells, an aggressive phenotype of tumor cells and exposure to

external carcinogenic factors. In this case, treatments may be effective if they drive the system to the

basin of attraction of the cancer cure state. In the second regime, cancer arises because the repair system

is intrinsically corrupted. In this case, the complete cure is not possible since the cancer cure state is no

more stable, but tumor recurrence may be delayed if treatment is prolongued. We review three

indicators of the resilience of a stable equilibrium, related with size and shape of its basin of attraction:

latitude, precariousness and resistance. A novel method to calculate these indicators is proposed. This

method is simpler and more efficient than those currently used, and may be easily applied to other

population dynamics models. We apply this method to the model and investigate how these indicators

behave with parameters changes. Finally, we present some simulations to illustrate how the resilience

analysis can be applied to validated models in order to obtain indicators for personalized cancer

treatments.
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reversibility takes place. Of first importance is the question
whether it is possible or not to return the parameters to their
original values. When parameters change due to evolutionary
factors, it is more likely that this change cannot be undone.
Changes due to external forces can be undone more easily through
the correct manipulation of those forces (if possible). However,
even if the original values can by restored, the reversal to the
original stable state may not be completely achieved if the system
exhibits hysteresis.

In this paper we illustrate how these concepts of ecological
resilience can be applied to cancer, a complex disease whose
causes are far from being well understood and whose cure is far
from being achieved. Indeed, despite the intense efforts that led the
elucidation of many biochemical mechanisms developed by cancer
cells to survive (Hanahan and Weinberg, 2011), there is a current
debate on which are the major factors that allow the onset of
cancer cells. While some argue that alterations in intrinsic cellular
processes are the main reasons that some tissues become
cancerous (Tomasetti and Vogelstein, 2015), others defend the
view that most cases of cancer result from extrinsic factors such as
environmental exposure to toxic chemicals and radiation (Wu
et al., 2016). With respect to cancer treatment, although the
development of new drugs and strategies to treat cancer in the last
fifty years achieved good results in many cases, another large
portion of cancer patients did not respond well to treatments, or
presented tumor recurrence, indicating that there is still a long
road in the fight against cancer (Kerbel and Kamen, 2004; Benzekry
et al., 2015).

We propose a simple model for tumor growth and apply the
above concepts to suggest a framework for viewing the arising of
cancer and its effective treatment as critical transitions between
two alternative stable states. In this framework, tumor growth and
tumor treatment depend ultimately on ecological resilience
questions. Further, we briefly review the three resilience indicators
commented above, propose a method to calculate these indicators
and apply this method to the model. As far as we know, this novel
method we propose is simpler and more efficient than those
currently used, and can be applied to other population dynamics
models to improve their analysis through this resilience perspec-
tive.

The paper is organized as follows. In Section 2 the model is
presented. In Section 3 the analysis of the model is performed. In
Section 4, the results are discussed in the ecological resilience
perspective. In Section 5, the method to calculate resilience
indicators is presented and applied to the model. Finally,
conclusions are presented in Section 6.

2. A toy model for tumor growth

We present a simple model consisting of a system of ODEs
describing tumor growth and its effect on normal tissue, together
with the tissue response to tumor. Our goal is not to consider the
several aspects of tumor growth and to reproduce quantitative
behavior with high accuracy, but to use the model to give some
insights through a resilience point of view. The model equations
are given by

dN

dt
¼ rN�mNN�b1NA; (1a)

dA

dt
¼ rAA 1� A

KA

� �
�b3NA�ðmA þ eAÞA; (1b)

where N and A stand for normal and tumor cells, respectively. This
system is a limit case of a three-dimensional model for oncogenesis
encompassing mutations and genetic instability (Fassoni, 2016).

Parameter rN represents the total constant reproduction of
normal cells, and mN is their natural mortality. A constant flux
for normal cells is considered in the vital dynamics, and not a
density-dependent one, like the logistic growth generally
assumed (Gatenby, 1995; Gatenby and Gawlinski, 1996; de
Pillis and Radunskaya, 2001; McGillen et al., 2014). The reason
for this choice is that at a normal and already formed tissue the
imperative dynamics is not the cells intraspecific competition by
nutrients, but the maintenance of a homeostatic state, through
the natural replenishment of old and dead cells (Simons and
Clevers, 2011).

On the contrary, cancer cells have a certain independence on
growth signals released by the tissue and keep their own growth
program, like an embrionary tissue in growth phase (Fedi et al.,
1997). Thus a density dependent growth is considered. Several
growth laws could be used, such as the Gompertz, generalized
logistic, Von Bertanlanfy and others (Sarapata and de Pillis, 2014).
We choose the logistic growth due to its simplicity, and a natural
mortality mA. An extra mortality rate eA due to apoptosis (Danial
and Korsmeyer, 2004) is also included.

Several models for tumor growth consider the phenomena of
tumor angiogenesis, i.e., the formation of new blood vessels to feed
the tumor, in response to signals released by tumor cells (Kerbel,
2008; Yang, 2012). In order to keep the model as simple as possible,
we do not consider angiogenesis here.

Parameter b3 encompasses, in the simplest way, all negative
effects imposed to cancer cells by the many cell types in the normal
tissue. These interactions include the release of anti-growth and
death signals by host cells (Hanahan and Weinberg, 2011), the
natural response of normal cells to the presence of cancer cells, the
competition by nutrients with tumor cells and so on. Similarly,
parameter b1 covers all mechanisms developed by tumor cells
which damage the normal tissue, like increasing local acidity
(Gatenby et al., 2006), supression of immune cells (Facciabene
et al., 2012), release of death signals (Hanahan and Weinberg,
2011), and competition with normal cells.

System (1) is similar to the classical Lotka–Volterra model of
competition (Fassoni et al., 2014), commonly used in models for
tumor growth (Gatenby, 1995; Gatenby and Gawlinski, 1996; de
Pillis and Radunskaya, 2001; McGillen et al., 2014) and biological
invasions (Fassoni and Martins, 2014), but has a fundamental
difference. The use of a constant flux instead a logistic growth to
normal cells breaks the symmetry observed in the classical Lotka–
Volterra model, so that no equilibrium with N = 0 will exist. Thus,
normal cells will never be extinct, on the contrary to those models.
We believe that this is not a problem, but, on the contrary, is a
realistic outcome. Indeed, roughly speaking, cancer ‘wins’ not by
the fact that it kills all cells in the tissue, but by the fact that it
reaches a dangerous size that disrupts the well functioning of the
tissue and threatens the health of the individual. A constant flux
term was already taken in other well-known models for cancer,
specifically, to describe the growth of immune cells (Kuznetsov
et al., 1994; de Pillis et al., 2005; Eftimie et al., 2011).

Let us comment on some resemblance of system (1) with the
well-known system of Kuznetsov et al. (1994), which describes the
interaction between immune cells and cancer cells. In that system,
equation for immune cells has two production terms: a constant
production term (analog to rN here) and a Michaelis–Menten term
representing the recruitment of immune cells due to the presence of
cancer cells. If we remove this second term (letting p = 0 in their
notation), that system becomes equivalent to system (1). Thus, the
immune cells of that model have basically the same behavior of
normal cells in this model, and the unique difference is the
recruitment term. In our model, as the population N is considered as
a pool of many different cell types, from which the immune cells are
a small fraction, it is natural to include in its dynamics only the
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