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1. Introduction

There is little dispute over the claim that the collective
structures built by termites, ants and slime molds are products
of cooperative work performed by a myriad of organisms who,
individually, are inept to conceive the greatness of the structures
they build (Marais, 1937). Thinking of those collective structures as
the organisms’ solutions to the problems that endanger their
existence, it is natural to argue that competence in problem solving
should be viewed as a candidate selection pressure for molding the
organization of groups of social animals (Bloom, 2001; Queller and
Strassmann, 2009).

Information flows between individuals via social contacts and,
in the problem-solving context, the relevant process is imitative
learning as expressed in this quote by Bloom ‘‘Imitative learning
acts like a synapse, allowing information to leap the gap from one
creature to another’’ which summarizes his view of those collective
structures as global brains (Bloom, 2001). Evidences that
cooperative work powered by social learning is an efficient

process to solve difficult problems are offered by the variety of
social learning based optimization heuristics, such as the particle
swarm optimization algorithm (Bonabeau et al., 1999) and the
adaptive culture heuristic (Kennedy, 1998; Fontanari, 2010).

From the perspective of the computer science, there has been
considerable progress on the understanding of the factors that
make cooperative group work effective (Clearwater et al., 1991,
1992; Page, 2007), although, somewhat disturbingly, the most
popular account of collective intelligence, the so-called wisdom of
crowds, involves the suppression of cooperation since its success
depends on the individuals making their guesses independently of
each other (Surowiecki, 2004) (see, however, King et al., 2012). We
note that quite recently formalized approaches to collective
learning dynamics have been considered by the applied mathe-
matics community (Bonacich and Lu, 2012; Burini et al., 2016).

In this contribution we build on a recently proposed minimal
model of distributed cooperative problem-solving systems based
on imitative learning (Fontanari, 2014) to study the influence of the
social network topology on the performance of cooperative
processes. Individuals cooperate by broadcasting messages
informing on their fitness and use this information to imitate,
with a certain probability, the fittest individual in their influence
networks. The task of the individuals is to find the global maxima of
smooth and rugged fitness landscapes generated by the NK model
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A B S T R A C T

Problem-solving competence at group level is influenced by the structure of the social networks and so it

may shed light on the organization patterns of gregarious animals. Here we use an agent-based model to

investigate whether the ubiquity of hierarchical networks in nature could be explained as the result of a

selection pressure favoring problem-solving efficiency. The task of the agents is to find the global

maxima of NK fitness landscapes and the agents cooperate by broadcasting messages informing on their

fitness to the group. This information is then used to imitate, with a certain probability, the fittest agent

in their influence networks. The performance of the group is measured by the time required to find the

global maximum. For rugged landscapes, we find that the modular organization of the hierarchical

network with its high degree of clustering eases the escape from the local maxima, resulting in a superior

performance as compared with the scale-free and the random networks. The optimal performance in a

rugged landscape is achieved by letting the main hub to be only slightly more propense to imitate the

other agents than vice versa. The performance is greatly harmed when the main hub carries out the

search independently of the rest of the group as well as when it compulsively imitates the other agents.
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(Kauffman and Levin, 1987; Kauffman, 1989) and the performance
or efficiency of the group is measured by the number of trials
required to find those maxima.

Our goal is to investigate whether the ubiquity of hierarchical
networks (Ravasz and Barabási, 2003), which are both modular and
scale-free, could be explained as the result of a selection pressure
favoring problem-solving efficiency. In fact, for rugged landscapes
we find that the hierarchical network performs better than the
(non-modular) scale-free and the random networks. The modular
organization of the hierarchical network with its high degree of
clustering facilitates the system to escape local maxima, despite
the presence of a hub with very high connectivity (super-spreader)
which, in general, may cause great harm to the system perfor-
mance by broadcasting misleading information about the location
of the global maxima (Fontanari and Rodrigues, 2016) as happens
in the case of the (non-modular) scale-free network. For smooth
landscapes, the topology of the network has little influence on the
performance of the imitative search. Since the hierarchical
networks are a very small subclass of the scale-free networks,
henceforth we will use the expression scale free network to refer to
a non-modular scale-free network and the expression hierarchical
network to refer to a modular scale-free network.

In addition, we find that for the three network topologies
considered here, namely, hierarchical, scale-free and random
topologies, allowing the main hub (i.e., the node with the highest
degree) to explore the landscape without much consideration for
the other individuals, even though those individuals may learn
from it, is always detrimental to the performance of the system.
Interestingly, for the hierarchical and scale-free networks, the
optimal performance in a rugged landscape is achieved by letting
the main hub to be only slightly more propense to imitate the other
agents than vice versa. A compulsive imitator located at the main
hub of the hierarchical network (or at the two main hubs of a scale-
free network) leads to a disastrous performance. For the random
network, where the main hub is not very influential, the
performance is maximized by the compulsive imitation strategy.
This is also true for the three topologies in the case of a smooth
landscape, but the reason is that in the absence of local maxima it is
always better to imitate the fittest individual in the group.

In the cooperative problem-solving context, cooperation means
the exchange of information between agents that may, in principle,
allow them to find the solution to a common problem more rapidly
than if they worked in isolation. In that scenario, the opposite of
cooperation is independent work and there is no conflict of
interests between the agents in the group. This usage of the word
cooperation contrasts with the meaning of cooperation in
evolutionary game theory, where there is a conflict of interests
between the agents and, consequently, a cost for the cooperative
agents (Axelrod, 1984).

The rest of this paper is organized as follows. For the sake of
completeness, we present a brief description of the NK model of
rugged fitness landscapes in Section 2. The rules of the agent-based
model that implements the imitative search are explained in
Section 3 and the three network topologies – hierarchical, scale-
free and random – are presented in Section 4. In Section 5 we
present and discuss the results of the simulations of the imitative
search on rugged and smooth NK landscapes for those three
topologies. Finally, Section 6 is reserved to our concluding remarks.

2. NK model of rugged fitness landscapes

The NK model is a computational framework to generate
families of statistically identical rugged fitness landscapes. It was
proposed by Stuart Kauffman in the late 1980s aiming at modeling
evolution as an incremental process, the so-called adaptive walk,
on rugged landscapes (Kauffman and Levin, 1987; Kauffman,

1989). Today the NK model is the paradigm of problem spaces with
many local optima, being particularly popular among the
organizational and management research community (Levinthal,
1997; Lazer and Friedman, 2007; Fontanari, 2016).

The NK model is named for the two integer parameters that
are used to randomly generate landscapes, namely, N and K. The
landscape is defined in the space of binary strings of length N

and so this parameter determines the size of the solution space,
2N. The other parameter K = 0, . . ., N � 1 influences the
ruggedness of the landscape. In particular, the correlation
between the fitness of any two neighboring strings (i.e., strings
that differ at a single component) is 1� K þ 1ð Þ=N (Kauffman,
1989). Hence K = 0 corresponds to a smooth landscape whereas
K = N � 1 corresponds to a completely uncorrelated landscape.
For concreteness, next we describe briefly the procedure to
generate a random realization of a NK landscape.

The 2N distinct binary strings of length N are denoted by x ¼
x1; x2; . . .; xNð Þ with xi = 0, 1. To each string x we associate a fitness

value F xð Þ which is an average of the contributions from each
component i in the string, i.e., F xð Þ ¼

PN
i¼1fi xð Þ=N, where fi is the

contribution of component i to the fitness of string x. It is assumed
that fi depends on the state xi as well as on the states of the K right
neighbors of i, i.e., fi ¼ fi xi; xiþ1; . . .; xiþKð Þ with the arithmetic in
the subscripts done modulo N, i.e., the numbers wrap around upon
reaching N (for example, i + N = i when the sum is done modulo N).
The functions fi are N distinct real-valued functions on {0, 1}K+1 but
the usual procedure is to assign to each fi a uniformly distributed
random number in the unit interval (Kauffman, 1989), which then
guarantees that F2 0;1ð Þ has a unique global maximum.

For K = 0 the global maximum is the sole maximum of F, which
can be easily found by picking for each component i the state
xi = 0 if fi 0ð Þ>fi 1ð Þ or the state xi = 1, otherwise. For K = N � 1, the
(uncorrelated) landscape has on the average 2N= N þ 1ð Þ maxima
with respect to single bit flips (Derrida, 1981). Finding the global
maximum of the NK model for K > 0 is a NP-complete problem
(Solow et al., 2000), which means that the time required to solve
the problem using any currently known deterministic algorithm
increases exponentially fast with the length N of the strings (Garey
and Johnson, 1979).

We note that the specific features of a realization of the NK
landscape (e.g., number and location of the local maxima with
respect to the global maximum) are not fixed by the parameters N

and K, because the components fi are chosen randomly in the unit
interval. This is the reason that finding the global maximum for any

realization of the NK landscape for large N and K > 0 is an
extremely difficult computational problem (Solow et al., 2000).
Hence, in order to better apprehend the influence of the network
topology and, in particular, the role of the main hub on the
performance of cooperative problem-solving systems, here we use
a single realization of the NK fitness landscape for fixed values of N

and K.
More pointedly, we consider two types of landscape: a smooth

landscape with N = 16 and K = 0 and a rugged landscape with
N = 16 and K = 5. Since for K = 0 all NK landscapes are equivalent,
there is no lack of generality in considering a single instance of that
family. The particular realization of the NK landscape with N = 16
and K = 5 considered here exhibits 296 maxima in total, among
which 295 are local maxima. The mean relative fitness of the local
maxima with respect to the fitness of the global maximum is
0.81 whereas the mean relative fitness of all strings is 0.60. It is
interesting to note that for large N the NK model exhibits the so-
called complexity catastrophe (Kauffman, 1989), i.e., as N increases
the fitness of the local maxima become poorer to such a point that
they are not better than the fitness of a randomly chosen string.
The effects of averaging over different realizations of the rugged
landscape is addressed briefly at the end of Section 5.
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