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1. Introduction

Ecological and epidemiological systems have many features of
non-linear dynamics in common. In relatively complex multi-
strain models, describing e.g. dengue fever epidemiology, we have
recently come across Hopf bifurcations and further limit cycle
bifurcations finally displaying a torus bifurcation and in parameter
space soon after also deterministic chaos with positive Lyapunov
exponents (Aguiar et al., 2009). Here the torus bifurcation already
appears in an autonomous, non-forced system which in this case is
nine dimensional.

However, due to the high dimensionality of these models
further investigations are quite difficult and especially the
question of the influence of noise on the system around the torus
bifurcation arises when applying such models to real world data
analysis (Aguiar et al., 2011, 2012; Stollenwerk et al., 2012).

Hence a simpler example in population biology could help to
understand better the interplay between deterministic bifurcation
structure and the population noise. As a prime example, the
Rosenzweig–MacArthur model, as a simple only two dimensional
model, can serve as such a test bed. It displays a Hopf bifurcation
and hence in its seasonally forced version a torus bifurcation.
However, the Holling type II response function, which gives the
Hopf bifurcation and in forcing the torus bifurcation, cannot be
easily used as a population biological model with population noise.
It is not directly related to a transition from one to another
population class which would allow a stochastic version. Instead, a
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A B S T R A C T

One of the simplest population biological models displaying a Hopf bifurcation is the Rosenzweig–

MacArthur model with Holling type II response function as essential ingredient. In seasonally forced

versions the fixed point on one side of the Hopf bifurcation becomes a limit cycle and the Hopf limit cycle

on the other hand becomes a torus, hence the Hopf bifurcation becomes a torus bifurcation, and via torus

destruction by further increasing relevant parameters can follow deterministic chaos. We investigate

this route to chaos also in view of stochastic versions, since in real world systems only such stochastic

processes would be observed.

However, the Holling type II response function is not directly related to a transition from one to

another population class which would allow a stochastic version straight away. Instead, a time scale

separation argument leads from a more complex model to the simple 2 dimensional Rosenzweig–

MacArthur model, via additional classes of food handling and predators searching for prey. This extended

model allows a stochastic generalization with the stochastic version of a Hopf bifurcation, and ultimately

also with additional seasonality allowing a torus bifurcation under stochasticity.

Our study shows that the torus destruction into chaos with positive Lyapunov exponents can occur in

parameter regions where also the time scale separation and hence stochastic versions of the model are

possible. The chaotic motion is observed inside Arnol’d tongues of rational ratio of the forcing frequency

and the eigenfrequency of the unforced Hopf limit cycle.

Such torus bifurcations and torus destruction into chaos are also observed in other population

biological systems, and were for example found in extended multi-strain epidemiological models on

dengue fever. To understand such dynamical scenarios better also under noise the present low

dimensional system can serve as a good study case.
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time scale separation argument leads from a more complex model
to the simple 2 dimensional Rosenzweig–MacArthur model, via
additional classes of predators searching for prey and predators
handling food (see e.g. Metz and Diekmann, 1986, p. 6ff. including a
historical account on Holling’s original work and its relation to
experimental results). Only this extended model allows a
stochastic generalization in terms of stoichiometric transitions
as a time continuous Markov process, described by a master
equation as e.g. frequently used in chemistry and physics, see
Stollenwerk and Jansen (2011) and further references in there. We
revisited this construction of time scale separation of a larger
population model into the Rosenzweig–MacArthur model with
Holling type II response function recently in Fuentes Sommer et al.
(2015) and in Stollenwerk et al. (2015), and could show good
agreement between stochastic higher dimensional version and the
reduction to the simple Rosenzweig–MacArthur model around the
Hopf bifurcation and the seasonally forced version leading to the
torus bifurcation.

Some studies have previously investigated the question of
complex dynamics in the seasonally forced Rosenzweig–
MacArthur model after a torus bifurcation, primarily (Kuznetsov,
2010) and in more detail (Rinaldi et al., 1993). There in Rinaldi
et al. (1993), it was observed that seasonal forcing in different
parameters of the model leads to similar bifurcation structures in
2-dimensional bifurcation diagrams with changing seasonality
and changing mean value of the forced parameter. The results
were obtained by bifurcation analysis via continuation, where
fixed points and limit cycles can be followed and Hopf and torus
bifurcations can be detected, but no further analysis beyond the
torus was possible, especially into the onset of complex
dynamics.

Hence here we revisit the analysis of Kuznetsov (2010) and
Rinaldi et al. (1993) first with one example of their parameter sets
and forcing in the predator birth rate, which gives well the generic
pattern observed also in other seasonally forced parameters. But
instead of using continuation methods we obtain the information
of the bifurcation structure via the complementary method of
Lyapunov spectra, here finally also in 2-dimensional parameter
space, confirming their rough picture, but now being able to also
observe the regions of complex behaviour, namely deterministic
chaos, via positive dominant Lyapunov exponents. However, we
find the chaotic region close to the torus bifurcation in slightly
different regions than speculated by Rinaldi et al. (1993), namely
inside Arnol’d tongues. For an introduction to Arnol’d tongues see
e.g. Arrowsmith and Place (1990). This is, of course, the
explanation why forcing in different parameters give similar
results: just the frequency ratio between the forcing frequency
and the eigenfrequency of the unforced Hopf limit cycle is of
importance for the occurrence of the Arnol’d tongues, not so much
which parameter changes the eigenfrequency of the unforced
Hopf limit cycle.

Finally, we could leave the parameter regions used in Rinaldi
et al. (1993), which do not allow an easy interpretation as
stoichiometric system, and found the same qualitative bifurcation
structure of Arnol’d tongues in the torus region and their
bifurcation into chaos in parameter regions where a time scale
separation from a stoichiometric system into the Rosenzweig–
MacArthur model is possible, giving now the way to further studies
of stochastic processes around the torus bifurcation and the region
of torus destruction into chaos.

2. The basic Rosenzweig–MacArthur model

For a prey population X and a predator population Y the
Rosenzweig–MacArthur model is in general given in a form similar
to the following two dimensional ordinary differential equation

(ODE) system, which was derived e.g. in Fuentes Sommer et al.
(2015) from a more extended system, and that can be understood
in terms of stoichiometric reactions giving a straight forward
stochastic interpretation as used in many population biological
systems (Stollenwerk and Jansen, 2011), via time scale separation.
It is
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with prey growth rate % and its carrying capacity k and a predator
death rate m as species specific parameters. Further we have the
interaction between the two populations given by a Holling type II
response function of the form of ðãX=ðb̃þ XÞÞ�Y with new
parameters ã and b̃, see e.g. Rinaldi et al. (1993). In our case,
Eq. (1), the parameters are derived from the more extended system
with hunting rate b, handling rate k and predator birth rate n, with
stoichiometric reaction scheme, including a growth limiting
resource like space or other food surrogates S as well as food
searching predators Ys and food handling predators Yh,
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and the relation of prey birth rate b and death rate a giving the
growth rate % and the carrying capacity k by

% ¼ b�a and k ¼ N 1�a
b

� �
(3)

used in Eq. (1). For the derivation of Eq. (1) from the extended
stoichiometric system (2) see Appendix A and for the stochastic
version of this stoichiometric system see Appendix B.

2.1. Parameters used in previous studies

In Rinaldi et al. (1993) the following parameters are given for
the Rosenzweig–MacArthur model in the form with Holling type II
response function with lumped parameters ã and b̃ e.g.

Ẋ ¼ r̃X 1�X
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� �
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(4)

with default parameters given in Rinaldi et al. (1993) as k̃ ¼ ẽ ¼ 1,
r̃ ¼ d̃ ¼ 2p, ã ¼ 2�2p and b̃ ¼ 0:3.

Hence in comparison with our notation we have from these
lumped parameters % ¼ r̃ ¼ 2p ¼ 6:283185, k ¼ k̃ ¼ 1,
k ¼ ã ¼ 2�2p ¼ 12:56637,
b ¼ ðã=b̃Þ�N ¼ ð2�2p=0:3Þ�N ¼ 41:8879�N, with N = 1 by default,
m ¼ d̃ ¼ 2p and n ¼ ẽ�ã ¼ 2�2p.

2.2. Analysis of the autonomous, unforced system

Now we first analyze the autonomous Rosenzweig–MacArthur
model in terms of classical fixed point analysis and its stability
analysis and compare with the Lyapunov spectral method, before
we then investigate the seasonally forced system.
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