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1. Introduction

Interest in the concepts of complex system and emergence has
been pursued over many years in many fields. In such circum-
stances, it is inevitable that conflicting definitions will arise. When
attempting a definition, it is important to be wary of including
concepts that are either themselves poorly defined or are merely
correlated with the concept at hand (Jax, 2007). With these caveats
in mind, we propose a formal definition of a system from which we
can formalise the circumstances under which emergence may
arise.

In doing this, we build an ontology of useful and rigorous
concepts related to emergence. An ontology (in computer science)
is a set of formal definitions of concepts and their relationships,
that can lead to automatic processing for the construction of formal
grammars and software (Guarino, 1995). It is our hope that this
methodology will underpin a broadly applicable clarification of
these concepts (e.g. an application to ecology in Gignoux et al.,

2011). Following Jax (2007), we begin by using mathematical
notation to define the concept of a ‘system’. Our notation provides
for, but does not impose, the possibility of emergent properties,
based on the commonalities between most definitions of
emergence. In so doing, we extract generic properties of ‘systems
with emergence’.

Despite fundamental differences, all definitions of emergence
share a common assumption: emergence arises only in systems
that can be described at both macroscopic and microscopic levels
(de Haan, 2006; De Wolf and Holvoet, 2005; Bedau, 2003). A
system with such properties is usually called a hierarchical system

(Allen and Hoekstra, 1992; Ahl and Allen, 1996; O’Neill et al.,
1986). In contrast, a non-hierarchical system, also called atomic

system, is one which cannot be divided into sub-systems; it is
atomic in the sense that we have no knowledge of a microscopic
representation (see Definition 24).

How can we formally define a hierarchical system in a generic
way? In one of its most commonly accepted definitions (Carnot,
1824), a system is ‘the part of the world under consideration for a

particular purpose’. Implicit in this definition is the existence of an
observer, someone or thing for which a part of the world is
extracted for consideration to some end. The ecosystem, as initially
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A B S T R A C T

Emergence and complex systems have been the topic of many papers and are still disputed concepts in

many fields. This lack of consensus hinders the use of these concepts in practice, particularly in

modelling. All definitions of emergence imply the existence of a hierarchical system: a system that can be

observed, measured and analysed at both macroscopic and microscopic levels. We argue that such

systems are well described by mathematical graphs and, using graph theory, we propose an ontology (i.e.

a set of consistent, formal concept definitions) of dynamic hierarchical systems capable of displaying

emergence. Using graph theory enables formal definitions of system macro-state, micro-state and

dynamic structural changes. From these definitions, we identify four major families of emergence that

match existing definitions from the literature. All but one depend on the relation between the observer

and the system, and remind us that a major feature of most supposedly complex systems is our inability

to describe them in full. The fourth definition is related to causality, in particular, to the ability of the

system itself to create sources of change, independent from other external or internal sources. Feedback

loops play a key role in this process. We propose that their presence is a necessary condition for a

hierarchical system to be qualified as complex.
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defined by Tansley (1935), falls within the scope of this definition,
just as do, for example, thermodynamic systems and systems of
social organisation. In the field of systems thinking, Jordan (1981)
finds that nothing more specific can be said in defining the term
‘system’ (the fundamental concept in the author’s discipline) other
than that ‘a system is composed of identifiable entities and their

relationships’. This definition is just as applicable to concrete
objects as it is to virtual or conceptual objects. For emergence to
occur, the system must be characterised as hierarchical, in the
sense that we can provide both a macroscopic and a microscopic
description. We will therefore define a hierarchical system as an

object composed of components in interaction. This is close to some
definitions of a complex system, but we make no assumption about
emergence as this is precisely what we wish to explore.

A system comprising components and their interactions is well
described by a mathematical graph (Diestel, 2000; Gross and
Yellen, 1999). A graph is a set of nodes connected by edges. We
propose to represent a hierarchical system as a mathematical
graph: the ‘interacting components’ that produce the ‘microscopic
state’ of the system are the nodes, the edges represent interactions,
while the system as a whole is represented by the graph. Although
the hierarchical relation between the graph and its components is
not explicit at this stage, this representation allows us to consider
both a macroscopic view of the system – the graph as a whole – and
a microscopic view – the list of all its components and their

interactions.

2. Formal definitions for a hierarchical system: an ontology

We first provide a minimal set of mathematical definitions to
describe a system without any a priori knowledge of emergence.

2.1. The system

We postulate that a hierarchical system can be represented as a
graph. We call the world W, that set of objects from which an
observer draws a subset to build a system for some

purpose. Components of the system are defined as objects c 2W,
and interactions as relations between any two components of W.

Proposition 1. A hierarchical system S is defined as the graph:

S :¼ ðC;R;gÞ

where C is the set of components (nodes) of the system:

C :¼ fcugu�nc <1; cu 2W

R is the set of relations (edges) between components of the system:

R :¼ frvgv�nr <1; rv 2W2

and g is the incidence function, which assigns a relation to a pair of

components:

g : R!C�C

rv!ðci; cjÞi�nc ;j�nc

nc is the number of components and nr the number of relations of the

system; W2 is the set of applications from W to W.

We make no assumption as to the type of graph used to represent S.

It can be directed, undirected, a multigraph or any other kind of graph,

hence the need for an explicit incidence function.

Where it may be ambiguous, we subscript sets C, R and function g
by the graph to which they belong.

Fig. 1 gives examples of systems represented as graphs.
For later simplification, its is convenient to define:

Definition 1. Components cu and relations rv are called elements of
the system S. We denote them by ew 2 E, with E = C [ R and the

[(Fig._1)TD$FIG]

Fig. 1. Three different examples of systems represented as graphs using Proposition 1. Circles denote system components cu and lines between them denote relations rv .
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