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1. Introduction

One of the main goals of eco-epidemiological studies is to
determine if a contagious disease will become endemic or not in a
host population. When a pathogen endemically remains, either it
persists at an approximately constant level or its prevalence
oscillates as the time passes (e.g. Anderson and May, 1992;
Hethcote and Levin, 1989). Here, we examine this issue by
assuming that the host population is formed by two groups with
different social and personal behaviors. These differences are
expressed in the infection rate, in the cure rate, and in the schedule
for updating the status of the individuals regarding the progress of
the infection. Thus, this work is supported by a risk-structured
model (e.g. Anderson and May, 1992; Rock et al., 2014), an
approach commonly used to analyze the spread of sexually
transmitted diseases, such as human immunodeficiency virus (e.g.
Jacquez et al., 1988; Piqueira et al., 2004), human papillomavirus
(e.g. Alsaleh and Gumel, 2014; Tobin and Comiskey, 2013), and
Chlamydia trachomatis (e.g. Althaus et al., 2012; Sharomi and
Gumel, 2011).

Models based on cellular automaton (CA) have been employed
for investigating the propagation of contagious disease (e.g. Ahmed
et al., 1998; Boccara et al., 1994; Doran and Laffan, 2005; Ferreri
and Venturino, 2013; Fuentes and Kuperman, 1999; Ilnytskyi et al.,
2016; Schimit and Monteiro, 2009; Silva and Monteiro, 2014;
Sirakoulis et al., 2000; Slimi et al., 2009; Yakowitz et al., 1990; Yang
et al., 2015), because features of the host population and its
interaction with the contagious pathogen can be naturally taken
into account and conveniently programmable in digital computers.
Some of these features include the spatial locations of the
individuals, their social activities, their movements, the network
of social contacts, disease control policies, the state transitions
related to the stages of the disease. Also, the parameters of these CA
models do have biological meaning. However, this approach has a
drawback: usually, the long-term behavior can be determined only
by running numerical simulations. In order to try to analytically
predict the attractor of this dynamical system, equivalent models
written in terms of differential/difference equations have been
derived. In fact, since the 1980s (e.g. Omohundro, 1984; Toffoli,
1984; Vichniac, 1984), equivalences between cellular automata
and differential/difference equations have been investigated (e.g.
Ahmed et al., 1998; Boccara et al., 1994; Ferreri and Venturino,
2013; Fuentes and Kuperman, 1999; Ilnytskyi et al., 2016;
Monteiro et al., 2006; Schimit and Monteiro, 2009; Silva and
Monteiro, 2014; Sirakoulis, 2004; Slimi et al., 2009; Yang et al.,
2015).

Ecological Complexity 31 (2017) 57–63

A R T I C L E I N F O

Article history:

Received 17 October 2016

Received in revised form 23 January 2017

Accepted 5 March 2017

Available online

Keywords:

Asynchronous cellular automaton

Epidemic

Probabilistic cellular automaton

Risk-structured model

Self-sustained oscillation

SIS model

A B S T R A C T

Consider a contagious disease affecting a host population composed of two groups with distinct habits.

At each time step, each individual of this population can be in one of two states: susceptible (S) or

infective (I). Here, a SIS epidemic model based on cellular automaton (CA) is proposed to study the

disease spreading in such a population. In this model, the state transitions are described by probabilistic

rules and each group has its own schedule to update the states of its individuals. We also propose a set of

difference equations (DE) to analyze this population dynamics and we show how these two approaches

(CA and DE) can be equivalent. We noticed that oscillations can be found in the composition of the group

with more active social life, but not in the composition of the other group.
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The epidemiological model proposed here is written in terms of
a probabilistic CA with asynchronous update. Therefore, the state
transitions of the cells composing the lattice are determined from
probabilistic rules and the states of all cells are not updated at the
same time steps (e.g. Fatés, 2014; Manzoni, 2012). In addition, to
explain the long-term behavior found in these simulations, an
equivalent model written as a set of difference equations (DE) is
analyzed.

This manuscript is organized as follows. The CA model and the
corresponding numerical simulations are presented in
Section 2. The DE model is examined in Section 3. It is also shown
how the parameter values of the DE approximation must be
estimated to reproduce the results obtained from the CA
simulations. In Section 4, the possible relevance of this work is
stressed.

2. The CA model

Suppose that the individuals of the host population live in a
square matrix composed of n � n = N cells with periodic boundary
conditions (that is, the bottom edge of the matrix contacts the top
edge and the right edge contacts the left edge; thus, a torus
embedded in a three-dimensional space is formed from a two-
dimensional lattice in order to eliminate edge effects). Each cell
corresponds to an individual. The neighborhood of a cell is formed
by its eight surrounding cells, which is usually known as Moore
neighborhood of unit radius (e.g. Wolfram, 1994). Due to the chosen
boundary condition, all cells have the same number of neighbors.

At each time step t, each cell is in one of two states: susceptible
Si or infective Ii, with i = 1, 2 denoting the type of behavior.
Recovery from the studied disease does not induce protective
immunity. There are N1 = (1 � m)N individuals belonging to the
group-1 and N2 = mN individuals in the group-2, with
0 � m � 1. These two types of individuals are randomly and
homogeneously distributed over the space. They stay in their
groups along the simulation; hence, Ni = Si(t) + Ii(t) = constant. The
assumption N1 + N2 = N = constant is appropriate for modeling
infections spreading quickly and/or populations in which the
deaths are balanced by the births.

The states of the cells belonging to the group-1 are updated at
each time step; the states of the cells belonging to the group-2 are
updated at each b time steps. Obviously, if b = 1, then the states of
all cells would be synchronously updated throughout a simulation.
If b > 1, the CA is said to be asynchronous. In this model, it is also
supposed that individuals of the group-2 interact with individuals
of both groups only at each b time steps. Thus, the group-2 is

formed by individuals with a less active social life, when compared
to individuals of the group-1.

The time evolution of this SIS (susceptible-infective-suscepti-
ble) model is ruled by the following set of probabilities of state
transitions. First, consider the group-1. At the time steps t = hb,
with h = 1, 2, 3, and so on, there is a probability P1ðv1Þ ¼ 1�e�k1v1 of
a S1-individual being infected by an I1-individual, in which v1 is the
number of I1-neighbors (of course, 0�v1�8). Note that
P1(0) = 0. Note also that P1ðv1Þ increases with v1; hence, the
higher the number of I1-neighbors, the higher the chance of a S1-
individual becoming sick. If S1 was not infected by I1-neighbors,
then there is a probability P2ðv2Þ ¼ 1�e�k2v2 of S1 being infected by
an I2-individual, in which v2 is the number of I2-neighbors. The
parameters k1 and k2 express the pathogen infectivity combined
with the habits of each group. Also, each I1-individual has a
probability P3 per time step of becoming cured and, consequently,
susceptible again. At the time steps t 6¼ hb, the state transitions of
the individuals of the group-1 only are ruled by the probabilities
P1ðv1Þ and P3.

Now, consider the group-2. At the time steps t = hb, there is a
probability P2ðv2Þ of a S2-individual being infected by an I2-
individual; and, if this infection did not occur, then there is a
probability P1ðv1Þ of S2 being infected by I1. The probability of I2

being cured is P4. At the time steps t 6¼ hb, the states of the
individuals of this group are not updated.

In Figs. 1–7, n = 200 (therefore, the host population is composed
of N = 40,000 individuals) and the initial condition is I1(0)/
N = 0.005(1 � m) and I2(0)/N = 0.005m (consequently, S1(0)/
N = 0.995(1 � m) and S2(0)/N = 0.995m). Thus, in t = 0, there are
0.5% of infective individuals and 99.5% of susceptible individuals.
The attractors shown in these figures are indeed global attractors
(because they are reached from any initial condition with
1 � I1(0) + I2(0) � N).

The curves exhibited in Figs. 1(a)–6(a) represent the average
results obtained in 20 simulations. The standard deviations of both
average curves are about 2%.

Figs. 1(a) and 2(a) present the time evolutions of I1(t)/N (thick
line) and I2(t)/N (thin line) by taking b = 5, k1 = k2 = 0.3, and
P3 = P4 = 0.5. Note that both groups have the same parameter
values regarding their interactions with the pathogen. In 1(a),
m = 0.1; in 2(a), m = 0.9. Observe that, by increasing m (the
proportion of the group-2), I2 increases and I1 decreases. This result
is not surprising: the higher the amount of individuals belonging to
the group-i, the higher the number of Ii(t) as the time passes.
However, it is interesting to note that I2(t) tends to a steady state
for both values of m and I1(t) to a steady state or a periodic solution,
depending on m.
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Fig. 1. Time evolutions of I1(t)/N (thick line) and I2(t)/N (thin line) obtained from the CA model (a) and from the DE model (b). In both approaches, the initial condition is I1(0)/

N = 0.005(1 � m) and I2(0)/N = 0.005m. In (a), the curves represent average values of 20 simulations with the CA model by taking m = 0.1, N = 40,000, b = 5, k1 = k2 = 0.3, and

P3 = P4 = 0.5. In (b), the curves were obtained by numerically solving the DE model after estimating the six parameters by using Eqs. (5)–(10). In this case, aN ’ 1.32, b ’ 0.50,

cN ’ 2.00, d ’ 0.50, pN ’ 0.05, and qN ’ 1.07. In both approaches, I1/N ! 0.52 and I2/N ! 0.06.
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