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A B S T R A C T

Several theoretical studies on disease propagation assume that individuals belonging to different groups
regarding their health conditions are homogeneously distributed over the space. This is the well-known
homogenous mixing assumption, which supports epidemiological models written in terms of ordinary
differential or difference equations. Here, we consider that the host population infected by a contagious
pathogen is composed by two groupswith distinct traits and habits, which can be homogeneouslymixed
or not. The pathogen propagation is modeled by using an asynchronous probabilistic cellular automaton.
Ourmain goal is to examine howa heterogeneous spatial distribution of these groups affects the endemic
state. We noted that homogeneous distribution favors the occurrence of oscillations in the population
composition. Surprisingly, we found out that the propagation dynamics of the heterogeneous
distribution can also be described by a set of ordinary difference equations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical studies on epidemiology aim to predict and control
the spreading of infectious pathogens. One of the key issues is to
determine the evolution of the number of infected individuals as
the time passes (e.g. Anderson and May, 1992; Keeling and Rohani,
2008).

Since the seminal work by Kermack and McKendrick (1927),
many epidemiological studies based on ordinary differential or
difference equations rely on the homogeneous mixing assumption
(e.g. Anderson and May, 1992; Keeling and Rohani, 2008). Thus,
these studies assume that spatial heterogeneities related to the
geographical locations of individuals and to the topological
structure of the network of social contacts can be neglected (e.g.
Turnes and Monteiro, 2014). Obviously, this is a strong simplifica-
tion.

Cellular automaton (CA) has been employed as an alternative
approach to model the propagation of contagious diseases (e.g.
Yakowitz et al., 1990; Boccara et al., 1994; Ahmed et al., 1998;
Fuentes and Kuperman, 1999; Sirakoulis et al., 2000; Doran and
Laffan, 2005; Monteiro et al., 2006; Slimi et al., 2009; Silva and
Monteiro, 2014; Ilnytskyi et al., 2016; Chaves and Monteiro, 2017).
In CA models, the spatial features of the host population are
naturally considered, because the neighborhood of each individual
can be easily taken into account.

We already used a probabilistic CA with asynchronous update
to study the disease spread in a host population composed by two
groups with distinct traits and habits (Chaves andMonteiro, 2017).
Thus, each group had its own infection rate, cure rate, and level of

social activity. In this former work; however, the two groups were
homogenously mixed. Here, our goal is to examine how the
endemic state is affected when one of these groups remains
confined to a given spatial region of the CA lattice. Interestingly, we
found out that even for this heterogeneous distribution, a mean-
field approximation written as a set of ordinary difference
equations (DE) can reproduce the dynamics observed on the CA
lattice.

This paper is organized as follows. In Section 2, the CA model
and the corresponding DE model are described. In Section 3, the
results obtained from numerical simulations are presented. In
Section 4, these results are discussed from an epidemiological
standpoint.

2. The models

In the CA model (Chaves and Monteiro, 2017), the host
population is represented by a square lattice with n�n =n2 =N
individuals with periodic boundary conditions. Each individual is
in contact with its eight surrounding neighbors, which is usually
called as Moore neighborhood of unit radius (e.g. Wolfram, 1994).

Assume that cure does not confer immunity to the correspond-
ing pathogen. Therefore, a recovered individual is susceptible, in
the sense that such an individual can be infected again. Thus, each
individual, at each time step t, is in one of two states: susceptible Si
or infected Ii, with i =1, 2 denoting its group. The group-1 is
composed by N1 = (1�m)N (with 0�m�1) individuals and their
states are updated at each time step. The group-2 is composed by
N2 =mN individuals and their states are updated at b time steps
(with b>1). Note that the group-2 is formed by individuals with
less active social life, as compared to the group-1.
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This SIS model is ruled by the following probabilistic rules
(Chaves and Monteiro, 2017). The probability per time step of a Si-
individual being infected by an Ii-individual is QiðviÞ ¼ 1� e�kivi

(with ki>0); if this infection does not occur, the probability per
time step of such a Si-individual being infected by an Ij-individual
(with j 6¼ i) isQjðvjÞ ¼ 1� e�kjvj (with kj>0). In these expressions, vi
is the number of Ii-neighbors and ki expresses the infectivity of the
pathogen concerning the group-i. The probability of an Ii-
individual being cured, per time step, is the constant Pi. These
rules are applied for all individuals for t =hb (with h =1, 2, 3 and so
on). For t 6¼hb, the rules are applied by supposing that the
population is composed only by the group-1 (that is, the group-2 is
supposed to be inactive). Also, each individual remains in its group
during the course of an epidemic.

Inspired by Kermack and McKendrick (1927), a mean-field
approximation of our SIS model can be written as (Chaves and
Monteiro, 2017):[44_TD$DIFF][45_TD$DIFF][46_TD$DIFF]

for t 6¼ hb
Iiðt þ 1Þ ¼ IiðtÞ þ faii½Ni � IiðtÞ�IiðtÞ � biIiðtÞgð2� iÞ; i ¼ 1;2

ð1Þ

[47_TD$DIFF][48_TD$DIFF]

for t ¼ hb

Iiðt þ 1Þ ¼ IiðtÞ þ
X2

j¼1

aij½Ni � IiðtÞ�Ij � biIiðtÞ; i ¼ 1;2 ð2Þ

[49_TD$DIFF]in which aij is related to the infections of Si-individuals due to the
contact with Ij-individuals (i,j =1, 2) and bi is related to the
recovery of Ii-individuals. Observe that for t 6¼hb, the number of I2-
individuals is not altered (that is, I2(t +1) = I2(t)).

An equivalence between CA and DE can be obtained by
estimating the parameter values of this DE model from a CA
simulation by using the following expressions (Chaves and

Monteiro, 2017): [68_TD$DIFF]

aij ’
DIiðtÞSi !Ij Ii
SiðtÞIjðtÞ

; i; j ¼ 1;2 ð3Þ

[69_TD$DIFF]

bi ’
DIiðtÞIi!Si

IiðtÞ
; i ¼ 1;2 ð4Þ

[70_TD$DIFF]in which DIiðtÞSi !Ij Ii is the number of state transitions Si! Ii

between t and t +1 due to infection by Ij (for i, j =1, 2) and [56_TD$DIFF][57_TD$DIFF]DIiðtÞIi!Si

is the number of state transitions Ii! Si between t and t +1 (that is,
the number of Ii-individuals in t that will be recovered at t +1).
Thus, by counting these state transitions in a CA simulation, the
parameter values of the DE model can be computed in order to
reproduce the dynamical behavior observed in such a CA
simulation.

Note that in our study the values of aij (the infection rate
constant) and bi (the inverse mean duration of infection) can be
affected by the social behavior of the individuals. This feature is
supported by the following reasoning. SIS models are convenient
to describe the propagation of infections caused, for instance, by
the bacteria Chlamydia trachomatis and Neisseria gonorrhoeae (e.g.
Kretzschmar et al., 1996; Jenkins et al., 2013). These sexually
transmitted diseases are commonly treated with antibiotics, but
cure does not confer immunity. In our study, distinct values of bi in
the DEmodel (Pi in the CA rules; in fact, bi = Pi, as shown by Chaves
and Monteiro, 2017) can reflect distinct levels of adherence to the
treatment against the pathogen. For instance, b1> b2 means that
the group with more active social life is more likely to seek
treatment (e.g., by taking antibiotics). Similarly, different values of
aij in the DEmodel (ki and kj in the CA rules) can reflect differences
in taking preventive measures against the pathogen propagation
(e.g., the frequency of condom use).

[(Fig._1)TD$FIG]

Fig. 1. In (a) and (c): N =40,000, m =0.3, b=5, k1 = 0.2, k2 = 1, P1 = 0.9, and P2 = 0.5. In (b): a11N’1.23, a12N’2.15, a21N’2.45, a22N’0.39, b1’0.89, and b2’0.50. In (d):
a11N’1.74, a12N’0.06, a21N’4.95, a22N’0, b1’0.90, and b2’0.50.
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