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A B S T R A C T

Mass balance of a glacier is an acceptedmeasure of howmuchmass a glacier gains or loses. In theory, it is
typically computed by integral functional and empirically, it is approximated by arithmetic mean.
However, the variability of such an approach was not studied satisfactory yet. In this paper we provide a
dynamical system of mass balance measurements under the constrains of 2nd order model with
exponentially decreasing covariance. We also provide locations of optimal measurements, so called
designs. We study Ornstein–Uhlenbeck (OU) processes and sheets with linear drifts and introduce K
optimal designs in the correlated processes setup. We provide a thorough comparison of equidistant,
Latin Hypercube Samples (LHS), and factorial designs for D- and K-optimality as well as the variance. We
show differences between these criteria and discuss the role of equidistant designs for the correlated
process. In particular, applications to estimation ofmass balance of Olivares Alfa and Beta glaciers in Chile
is investigated showing that simple application of full raster design and kriging based on inter- and
extrapolation of points can lead to increased variance.[129_TD$DIFF] We also show how the removal of certain
measurement points may increase the quality of the melting assessment while decreasing costs. Blow-
ups of solutions of dynamical systems underline the empirically observed fact that in a homogenous
glaciers around 11 well-positioned stakes suffices for mass balance measurement.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Glacier mass balance is an important measure of the glacier
health, since accounts for the mass gains and losses during a
specific period of time, normally a [130_TD$DIFF]hydrological or calendar year
(Rivera et al., 2016). We will focus in the glaciological method
(Cogley et al., 2012), here themass balance ismeasured at stakes or
poles’ networks installed on the glacier surface, whose distribution
depends on altitude, slope, topography, and other parameters. In
many cases, the distribution is skewed or seriously limited by
accessibility (mainly due to crevasses) or logistical constrains.

These measurements are ideally done at monthly frequency, but
accessibility or budget limitations reduce the number of surveys,
sometimes to a very minimum of two per year, one in the
accumulation season peak and another in the ablation season
maximum. The stakes height above the snow/ice surface at the
beginning of the mass balance year (normally at the end of the
ablation season), is therefore compared to successive measure-
ments along the year, when snow/ice density must be also
determined in order to convert vertical heights into water
equivalent volumes (Cuffey and Paterson, 2010). The discrete
mass balance data must be integrated over the entire glacier
surface byapplying geo-spatial interpolationmethods or simply by
computing the arithmetic mean of measurements (Cogley et al.,
2012).

The effective sample size has been addressed previously in
(Cogley, 1999), where the analysis of multiple time series of point
mass balance measurements have shown that correlation
decreases along differences in elevation between the points. A
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similar conclusion is obtained in Fountain and Vecchia (1999),
where the dominant effect of the gradient of mass balance with
altitude was shown [131_TD$DIFF]to bemore relevant than transverse variations.
Hence, the number of mass balance measurements required to
determine the mass balance appears to be scale invariant for small
glaciers (<10km2) with five to ten stakes being enough.

In this paper we define [132_TD$DIFF]an underlying dynamical system, thus
putting measurement locations and underlying parameters into
dynamical relation. Such dynamical systems can appear naturally
because of various modelling modalities (see Stehlík et al., 2016,
2017). Based on this background we discuss the statistical
optimality of stakes distributed over the glacier. A problem which
arises is that neither locations nor measurements themselves are
independent. This is why we provide a comparison between
monotonic and space-filling designs, introduced in the case of
Ornstein–Uhlenbeck (OU) sheets in Baran et al. (2013); [133_TD$DIFF] Baran and
Stehlík (2015). We consider both, D- and K-optimality and
minimization of variance of arithmetic mean. Practically, we study
Smit's paradox (Smit,1961) for planar Ornstein Uhlenbeck process,
so called OU sheet.

In the next sectionwe show different designs strategies, then in
Section 3, we consider OU processes and OU sheet. [134_TD$DIFF] We continue
with Section 4 where we provide a motivating example on mass
balance for glaciers Olivares Alpha and Beta in Chile. Some results
follow in Section 5 where the simulation on defined optimal design
criteria allows us to compare different design strategies. Section 6
contains the unpleasant increment of variance after using kriging
methods for the estimation of the mass balance.[135_TD$DIFF] Moreover, the
variance changes after the removal of stakes, even showing a
decrease of it under a particular covariance structure. Finally,
Section [136_TD$DIFF]7 provides a dynamical system and blow-ups in order to
technically explain interrelations between parameters and design
points. We show, that under some generic circumstances variance
of mass balance estimator can grow with the number of stakes.

2. Optimal design under correlated errors

In many situations we can meet problems of unavoidable
increase of variance (this can be related to Smit's work Smit, 1961)
when using additional interpolation or extrapolation by simple
kriging. Hence, more sophisticated designs than usage of full
rasterization of the grid, namely equidistant, factorial, Latin
Hypercube Samples under S-optimality (LHS*) and Latin Hyper-
cube Samples optimal with respect to Euclidean distances (LHS+)
designs are compared with respect to D- and K-optimality as well [137_TD$DIFF]
as the variance. Therefore, mass balance estimation of glaciers
Olivares Alpha and Beta, important meltwater contributors to the
Maipo River in Santiago, requires proper data sampling techniques.
To construct such techniques, we need to deal with optimal design
strategies.

The determination of optimal designs for models with
correlated errors is substantially more difficult and for this reason
not sufficiently developed. A stochastic process with parameter-
ized mean and covariance is observed on a compact set. The
information obtained from observations is measured through the
information functional (defined on the Fisher information matrix
(FIM)). We focus on efficient designs for parameters of correlated
processes and discuss the role of equidistant designs for correlated
processes. Such designs have been proven to be optimal for
parameters of trend of stationary Ornstein–Uhlenbeck process (see
Kiselák and Stehlík, 2008). For such a process a study of small
samples and asymptotical comparisons of the efficiencies of
equidistant designs was provided whilst taking both the param-
eters of trend as well as the parameters of covariance into account.
If only trend parameters are of interest, the designs covering more
or less uniformly the whole design space will rather be efficient

when correlation decreases exponentially (see Kiselák and Stehlík,
2008). Some other issues on designs for spatial processes, i.e.
identifiablity and existence of optimal designs, are given in Dette
et al. (2008);[138_TD$DIFF] Müller and Stehlík (2009); [139_TD$DIFF] Stehlík et al. (2008). The
role of heteroscedasticity is studied in Boukouvalas et al. (2014).

Exact K-optimal designs have been firstly introduced by Ye and
Zhou (2013) in the setup of polynomial regression models and
were later extended in Rempel and Zhou (2014). Both of these
setups consider cases having independent errors. K-optimality is a
new design criterion for the construction of regression designs,
based on the condition number of the information matrix. Thus, K-
optimal design minimizes the condition number k(M) of Fisher
information matrix M, i.e.

kðMÞ ¼ l1ðMÞ
lpðMÞ ;

if lp(M)>0 and 1 otherwise. Here, l1(M) and lp(M) are the
largest and the smallest eigenvalues, respectively.

Multicollinearity is a common problemwhen estimating linear
or generalized linear models. It occurs when there are high
correlations among the predictor variables, leading to unreliable
and unstable estimates of regression coefficients. However, many
data analysts do not realize that there are several situations in
which multicollinearity can be safely ignored, and we hope that K-
optimal design is a helpful tool in this direction [140_TD$DIFF](see Baran, S., K-
optimal designs for parameters of shifted Ornstein-Uhlenbeck
processes andsheets. J. Stat. Plan. Inference 186 (2017), 28–41).

3. Ornstein–Uhlenbeck process and sheet

Consider the stochastic process [141_TD$DIFF]

YðsÞ ¼ a1 þ a2sþ eðsÞ; ð1Þ
where C([142_TD$DIFF]e(s), e(t)) = exp(�r|s� t|). For model (1) the Fisher
information matrix Mu(n) on the unknown parameter vector
u = (a1, a2) based on observations {Y(si), i =1, 2, . . . , n}, n�2,
equals[212_TD$DIFF][213_TD$DIFF][214_TD$DIFF][215_TD$DIFF]

MuðnÞ ¼ HðnÞCðnÞ�1HðnÞ>; where HðnÞ :
¼ ð 1 1 � � � 1

s1 s2 � � � sn
Þ;

and C(n) is the covariance matrix of the observations (see Pázman,
2007;[143_TD$DIFF] Xia et al., 2006). On the other hand, consider now the
stationary process[141_TD$DIFF]

Yðs;tÞ ¼ u þ eðs;tÞ ð2Þ
with design points taken from a compact design space
X ¼ ½a1;b1� � ½a2;b2�, where b1> a1 and b2> a2 and [141_TD$DIFF]eðs;tÞ; s;t 2 R,
is a stationary Ornstein–Uhlenbeck sheet, that is a zero mean
Gaussian process with covariance structure[208_TD$DIFF][141_TD$DIFF]

E eðs1;t1Þeðs2;t2Þ ¼
~s2

4ab
expð�ajt1 � t2j � bjs1 � s2jÞ; ð3Þ

where a > 0;b > 0; ~s > 0. We remark that [216_TD$DIFF]e(s, t) can also be
represented as [208_TD$DIFF]

eðs;tÞ ¼ ~s

2
ffiffiffiffiffiffiffi
ab

p e�at�bsW ðe2at;e2bsÞ;

where W ðs;tÞ; s;t 2 R, is a standard Brownian sheet (Baran et al.,
2013). Under this setup we compute Fisher information (FIM) for
four designs defined in Section 2. Eq. (4) computes FIM for
equidistant design points on the diagonal of a square [0, 1]� [0, 1]
(also equidistant on diagonal line (EDL) hereafter). Eq. (5)
calculates FIM for factorial design with points in [0, 1]� [0, 1].
Fisher information matrix calculation for the LHS designs (both
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