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1. Introduction

In the past several decades scientific effort has been focused on
studying and understanding global climate changes. The effect of
climatic changes has become more and more visible and in many
regions of the world these changes are represented by increasing of
weather extremes (Chan et al., 1873; Coumou and Rahmstorf,
2012; Klein Tank and Können, 2003).

All ecosystems (Methan (Sabolova et al., 2015), Guanaco
Glacier (Jordanova et al., [8_TD$DIFF]2016), Snow extremes (Stehlı́k et al.,
2015)) are oscillating. Decomposition to deterministic, stochastic
and chaotic part have been studied by Stehlı́k et al. (2016). We can

understand contributions to oscillations in at least three following
ways:

(1) Extreme Value Index (EVI) j oscillates around 0 (it can have
positive, negative or zero values). As Penalva et al. (2016)
pointed out, difficulties may rise with the ‘‘ [9_TD$DIFF]Regularity
conditions’’ for the maximum likelihood (ML) estimation
(Smith, 1985), it is shown that the usual property of
asymptotic normality holds provided the extreme value
parameter j is larger than �0.5. For all environments we
can consider j > �1 (Penalva et al., 2016). Recently, Zhou
(2009, 2010) showed that the ML estimators verify the
property of asymptotic normality for j > �1. The Second
Order Regularity condition (SOC) can be difficult to be checked
(or even satisfied) in practical application. E.g. if the observed
random variable (r.v.) is [10_TD$DIFF] a power of Uniform or has power law
behavior at the finite right end point (see Example 3.3.15 and
3.3.16, page 137, Embrechts et al., 1987), there is not unique
SOC parameter r.
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A B S T R A C T

We show how a dynamical system given by a t-score function for some class of monotonic data

transformations generates consistent extreme value estimators. The variation of their values increases

the uncertainty of proper assessment of climate change. Two important examples illustrate the

methodology: mass balance measurements on Guanaco glacier, Chile, and extreme snow loads in

Slovakia. We experience singular learning of the transitions in ecosystems.

� 2016 Elsevier B.V. All rights reserved.

* Corresponding author at: University of Valparaı́so, Gran Bretaña 1111,

Valparaı́so, Chile.

E-mail addresses: Milan.Stehlik@jku.at (M. Stehlı́k), pablo.aguirre@usm.cl

(P. Aguirre), Stephane.Girard@inria.fr (S. Girard), pavlina_kj@abv.bg (P. Jordanova),

jozef.kiselak@upjs.sk (J. Kisel’ák), sebastian.torresle@alumnos.usm.cl (S. Torres),

zoltan@sadovsky.info (Z. Sadovský), arivera@cecs.cl (A. Rivera).
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(2) Aside of (1), the consistent estimators of tail parameters can be
[11_TD$DIFF]built up upon t-scores (Jordanova et al., [8_TD$DIFF]2016). The parameters
of harmonic mean estimators (HME) are consisting dynamical
system which can surprisingly always find a monotonic
representing data function (t-score function) h. This process
contributes to deterministic dynamics of Stehlı́k et al. (2016).

(3) The use of Negative t-Hill(n-t-Hill) for estimation of the
EVI index j < 0) can give several limiting behaviors, however,
limits can be given by symmetric (normal) or classical
(Weibull) distributions, which both are special cases of
generalized gamma distribution (ggd), see Stehlı́k (2008).

The paper is organized as follows. In the next session we study
autonomous system of t-score functions. In Section 3 we study
mass balance measurements from Guanaco glacier and we show
that both negative and positive EVIs are obtained. In Section 4 we
study the extremal snow loads in Slovakia, again receiving both
negative and positive EVIs. To maintain the readability of [12_TD$DIFF] the
manuscript we put technicalities to Appendix.

2. Dynamical systems of t-score functions

The transformation-based score (Fabián, 2001; Stehlı́k et al.,
2010) or shortly the t-score for the density f is defined as

Thðx; uÞ ¼ � 1

f ðx; uÞ
d

dx

1

h0ðxÞ f ðx; uÞ
� �

:

It expresses a relative change of a basic component of the density,
i.e., density divided by the Jacobian of mapping h. The t-score
is a suitable function for using the generalized moment method
for the estimation of parameters of heavy-tailed distributions. Let
X1, . . ., Xn be independent identically distributed (i.i.d) sample from
F with probability density function (p.d.f.) f. The parametric version
of the so-called t-mean, which can be considered as a measure of
central tendency of distributions, yields the moment estimation
equations for u in the form

1

n

Xn

i¼1

TðXi; uÞ ¼ 0:

The solution û is strongly consistent and asymptotically normal
(see Fabián, 2001). For t-Hill estimator (Fabián and Stehlı́k, 2009),
we have bounded score

Sðx; uÞ ¼ T h̃ðx; uÞ ¼ u 1� u þ 1

ux

� �
and for generalized t-Hill estimator (Beran et al., 2014) (Pareto
distribution and h̃ðxÞ ¼ lnðx�1Þ; x>1), we have the score

Sðx; u;bÞ ¼
u 1� u þ b�1

uxb�1

� �
; for b 6¼1;

u
1

u
�lnx

� �
; for b ¼ 1:

8>><>>: (1)

where b> 0 is tuning parameter. For b = 2 we [14_TD$DIFF]obtain t-Hill, with
‘‘typical’’ transformation of the support of the distribution (1,1) to
the whole real line (�1, 1) is h̃ðxÞ ¼ lnðx�1Þ; x>1. Here an
important inverse problem arises. For a given score S̃, does there exist
one or several sufficiently smooth functions h such that equation

Th ¼ S̃ (2)

holds? Which qualitative properties do they posses?
Consider now the Pareto distribution with the probability

density function (p.d.f.)

f ðx; uÞ ¼ ux�u�1; x>1

where u > 0 is a shape parameter (the tail index). Let us modify
Eq. (2) by multiplying by f > 0 in order to receive exact 2nd-order
differential equation in the form

hðxÞ þ d

dx

f ðxÞ
h0ðxÞ

� �
¼ 0; (3)

where h(x) = S(x;u, b) f(x). Now, integrate Eq. (3) to obtain an
equation, which is solvable by quadrature, of the form

HðxÞ þ f ðxÞ
h0ðxÞ

� �
¼ C;

where H(x) is an antiderivative of h. Its form (under the condition
b 6¼ 1 � u) is:

HðxÞ ¼ u2
Z

1� u þ b�1

uxb�1

� �
x�u�1dx ¼ ux�uðx1�b�1Þ þ C1:

This yields several classes1 of solutions expressible in general in
the form of special functions (a non-elementary antiderivatives).
But this is an obstacle, since they can be hardly jointly analyzed
because of their transcendental nature.

[16_TD$DIFF]These difficulties motivate us to study Eq. (2), by a different
approach, applicable for general density f and score function S̃. In
order to analyze it is more convenient to define some extra
variables
w ¼ ðx; y; zÞ :¼ðt þ a;h;h0Þ; a2 suppð f Þ ¼ fx2R; : f ðxÞ 6¼0g. Under
the assumption h0 6¼ 0 Eq. (2) is equivalent to the system
ẇ ¼Wðx; y; zÞ, where W(x, y, z) = (1, z, C(x, z)), Cðx; zÞ ¼ z2 Sþ
z d

dx lnð f ðxÞÞ and ðx; y; zÞ 2D0, with D0 :¼ ½a;1Þ�½a;1Þ�Rnf0g.
We use this approach in details for (3), where a = 1, x � 1 is the

independent variable, h(x) � 1 is the unknown function with
h0(x) 6¼ 0 and ðb; uÞ 2Rþ are parameters[2_TD$DIFF]. In this way, (3) is
equivalent to the following set of autonomous ordinary differential
equations:

ẋ ¼ 1;
ẏ ¼ z;
ż ¼ ’ðx; zÞ;

8<: (4)

where

’ðx; zÞ ¼ � u þ 1

x
zþ u 1� u þ b�1

uxb�1

� �
z2;

and ðx; y; zÞ 2D0.
In our setting any initial condition ðx0; y0; z0Þ 2D0 defines a

unique smooth solution of (4)—and, hence, a unique differentiable
solution y = h(x) of (3). Each solution of (4) can be represented as a
smooth orbit {(x(t), y(t), z(t))} in R3 parameterized by t2R; see
Guckenheimer and Holmes (1986) for more details.

The (unique) orbit through a given point ðx; y; zÞ 2D0 is tangent
to the vector (1, z, w(x, z)) at the point (x, y, z). Hence, an orbit
always flows forward in the direction of x and never ‘‘comes back’’
near any point already visited in the same orbit. More precisely,
there is no dense orbit of (4) in any open region of the phase space
R3. Hence, there cannot be topological mixing, which is one of the
necessary ingredients of chaotic dynamics (Guckenheimer and
Holmes, 1986; Hasselblatt and Katok, 2003).

For the fixed initial condition[18_TD$DIFF], we are able to obtain [19_TD$DIFF] a monotonic
solution for t-score for almost all possible cases of parameters. The
t-score defines consistent estimator of tail parameter u. The choice
of parameter b is an issue of experience for the statistician/

1 E.g. for b = 1 (Hill or MLE estimator) h̃ðxÞ ¼ �ulnlnxþconst., x > 1 is the example

of h which can be expressed in terms of elementary functions.
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