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A B S T R A C T

The temporal and spatial characteristics of landscape pattern change can reflect the spatial impact of urbani-
zation on the ecological environment. Studying the relationship between urbanization and landscape patterns
can provide supports for urban ecological management. Previous studies have examined the quantitative re-
lationship between the social economy and landscape patterns of an entire region, but have not considered the
spatial non-stability of this relationship. In this study, we characterized the landscape patterns in Beijing City,
China during 2000 and 2010 using four landscape metrics, i.e. patch density (PD), edge density (ED), Shannon’s
diversity index (SHDI) and the aggregation index (AI). Geographically weighted regression (GWR) was employed
to identify the spatial heterogeneity and evolution characteristics of the relationship between the urbanization of
population density (POP), gross domestic production (GDP) and nighttime lighting (NTL), and landscape pat-
terns. The evolution of urban landscape patterns indicated a decentralized, aggregated, and fragmented change
from the downtown to the suburb and outer suburb. During the 10-year period, the average PD in the downtown
increased by 100.6%, and the increase of AI in the suburb was the largest. The PD, ED and SHDI increased by
different degrees in the outer suburb. The influences of different urbanization modes on landscape patterns were
also different. Infilling mode made the landscape patterns more regular and integrated. The landscape was more
broken and complicated under the edge-expanding mode, and the leapfrog mode made PD and SHDI increase
slightly. In the relationship interpretation, GWR effectively identified the spatial heterogeneity, and improved
the explanatory ability compared to ordinary least squares (OLS). The most intense response to urbanization was
the forest landscape and the forest-cultivated land ecotone in the northwest of Beijing City, indicating that this
region was ecologically fragile. The population density in the urbanization index had a direct effect on landscape
patterns, while the PD affected by urbanization was greater than the shape, aggregation and diversity index.
Affected by development policy, urban planning and other factors, the explanation degree of social economy to
landscape patterns decreased in 2010. GWR is an effective method for quantifying the spatial differentiation
characteristics of urbanization impacts on landscape patterns, which can provide more spatial information and
decision criteria for the green development of a compact city.

1. Introduction

Issued by the Habitat III conference of cities on 20 October 2016,
the New Urban Agenda pointed out by the middle of the century the
world’s urban population was expected to nearly double. This means
that four of every five people will be living in towns or cities, making
urbanization one of the most transformative trends in 21st century.
Populations and socioeconomic activities are increasingly concentrated
in cities, posing huge sustainability challenges in terms of housing,
infrastructure, food security and natural resources management.
Urbanization includes the changes of population, industrial structure
and landscape types (Zhang and Su, 2016). The change of landscape

types and proportions has been characterized by the conversion of
ecological land such as forest land and grassland into agricultural land
and construction land, and in some areas the agricultural land has been
largely transformed into construction land (Weng, 2007; Liu et al.,
2011). At the same time, the landscape patterns in rapidly urbanizing
areas have presented a remarkable, highly fragmented feature. The
single, continuous natural patches have become a complex, hetero-
geneous and discontinuous mosaics (Liu et al., 2014). The fragmented
landscape hinders the spread of material and energy flow (Kreuter
et al., 2001), and changes the regional energy, material and nutrient
cycling process (McDonnell and Pickett, 1990). Thus, a fragmented
landscape will affect the function and services of regional ecosystems
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(Alberti, 2005; Estoque and Murayama, 2012; Peng et al., 2016b), re-
sulting in a series of ecological and environmental problems (Li et al.,
2010a; Jacobs, 2011), such as biodiversity loss, urban heat island effect,
environmental pollution, soil erosion and so on (Wu, 2010; Schneiders
et al., 2012; He et al., 2014; Zhou et al., 2014).

Understanding and solving the urbanization problems from the
perspective of landscape pattern is one of the research hotpots in
ecology and geography (Zhou et al., 2011; Shrestha et al., 2012;
Estoque and Murayama, 2016). Landscape patterns can be quantified
by landscape metrics, which are one of key tools to monitor, assess and
manage the landscape (Li and Wu, 2004). The ecological consequences
of urbanization can be understood by applying landscape metrics to
describe and analyze the dynamic changes of regional landscape (Li
et al., 2010b; Peng et al., 2016c; Schwoertzig et al., 2016). Landscape
metrics have been extensively used for quantifying landscape patterns
and their change. For example, Liu and Yang (2015) used landscape
metrics to examine the size, pattern and nature of land use changes,
demonstrating that landscape metrics could reveal the spatial char-
acteristics and underlying processes of urban expansion. Kane et al.
(2014) analyzed urban expansion based on landscape area, fragmen-
tation, shape complexity and diversity. Su et al. (2014) analyzed the
different responses of agricultural landscapes to urbanization by using
urbanization indicators and landscape metrics. However, the changes of
landscape patterns are spatially heterogeneous, and the evolution do
not always move towards scattered and irregular forms. Different urban
expansion modes and land use types will lead to different changes of
landscape patterns.

Considerable studies have explored the relationship between land-
scape patterns and urbanization. The factors driving landscape change
are mainly classified as biophysical and socioeconomic ones (Serra
et al., 2008; Du et al., 2014; Maimaitijiang et al., 2015). Generally
speaking, human activity can be reflected by socioeconomic factors,
and nighttime light is the major factor in shaping the landscape. The
soils, climate and other biophysical factors can also significantly affect
the land use. However, because socioeconomic data are limited by
statistical units, most of the studies have been conducted at city or
county scale, and could not accurately reveal the spatial differentiation
of the impact of socio-economic factors on landscape patterns (Ma
et al., 2008). Many statistical models have been applied to describe the
relationship between urbanization and landscape patterns, such as
multiple regression and stepwise regression based on ordinary least
squares (OLS) (Bagan and Yamagata, 2012). OLS model is a global
parameter estimation technique (Zhang et al., 2009), based on two
assumptions: (1) the model residuals do not exhibit spatial auto-
correlation, and (2) the random disturbances have equal variance.
When OLS model is applied to spatial data, these two laws are violated
because of the non-stationary spatial distribution of natural data (land
cover, and landscape metrics) and socioeconomic data (GDP and po-
pulation density). Thus, OLS model only reflects global information and
lacks the ability to explain the local relations. Relationships at different
positions will be hidden. In addition, because of the similar geo-
graphical environment and the human disturbance, the landscape fea-
tures of adjacent areas are more consistent than distant areas, and the
landscape metrics will also exhibit spatial autocorrelation. Therefore,
when exploring the relationship between landscape patterns and ur-
banization, the performance and interpretation power of OLS model is
restricted. For the above reasons, OLS is no longer considered applic-
able to the study of relationships between landscape evolution and its
driving forces.

Geographically weighted regression (GWR) reflects the spatial
characteristics of relationships by constructing local regression equa-
tions at each grid in the study area, thereby avoiding the problems of
spatial autocorrelation, heterogeneity, and non-stationarity (Brunsdon
et al., 1996; Su et al., 2012; Hu et al., 2015; Tenerelli et al., 2016). The
GWR model can compute the regression coefficients for each location to
describe a spatial relationship precisely, and the distribution of

residuals of GWR is more random in space than that of OLS (Foody,
2003). GWR has been widely used in spatial correlation studies (Su
et al., 2016, 2017). For example, Tu and Xia (2008) used GWR to ex-
plore the spatial relationship between land use and water quality under
the background of urbanization. Gao and Li (2011) applied GWR to
explore the spatial non-stationary relationship between urban surface
temperature and environmental variables, and demonstrated that GWR
was an effective method for solving the geo-spatial non-stationarity
problem. Pribadi and Pauleit (2016) studied the relationship between
peri-urban agriculture and urban socioeconomic system at village and
sub-district scales, and showed that GWR could identify the different
impacts of economic activity, poverty and food security in various re-
gions.

In the first decade of the 21st century, Beijing City experienced
rapid urbanization (Peng et al., 2016a), and landscape patterns changed
significantly. Land use in Beijing City is diverse, including highly ur-
banized areas, suburbs experiencing rapid urbanization, and well-pre-
served forest lands in the northwest of the city. The differences in urban
development levels and terrain factors will inevitably cause spatial
differences in the driving forces, so GWR is well-suited to examining the
relationships between landscape changes and urbanization. The pur-
pose of this paper is to explore the spatial heterogeneity of urbanization
impact on landscape patterns in Beijing City using GWR. In particular,
the main research objectives are as follows: (1) to use landscape metrics
to identify the characteristics of landscape patterns in Beijing City
during 2000 and 2010; (2) to explore the spatial non-stationarity of
urbanization impact on landscape patterns; and (3) to compare the
impacts of different urbanization factors on landscape patterns.

2. Methodology

2.1. Study area and data source

Beijing City is located in the north of the North China Plain at
longitudes from 115°25′E to 117°30′E, and latitudes from 39°28′N to
41°05′N, with a total area of approximately 16,400 km2. The elevation
of terrain in Beijing City is high in the northwest and low in the
southeast. Mountain area accounts for about 62% of the total area at
elevations between 1000 m and 1500 m, and plain area is flat and open,
accounting for about 38% of the total area at elevations between 20 m
and 60 m. Beijing City is in a typical northern temperature zone, with
sub-humid continental monsoon climate. The annual average tem-
perature in Beijing City is 12.3 °C, and annual precipitation is 572 mm.
Beijing City has 16 districts including Dongcheng, Xicheng, Haidian,
Chaoyang, Fengtai, Shijingshan, Mentougou, Fangshan, Tongzhou,
Shunyi, Changping, Daxing, Huairou, Pinggu, Yanqing and Miyun.
According to urban and rural differences and topographical features,
Beijing City can be divided into five urban development zones (Fig. 1):
(1) Downtown, i.e. the inner city, including Dongcheng and Xicheng
District; (2) Suburb, including Haidian, Chaoyang, Fengtai and Shi-
jingshan District; (3) Outer suburb (in the plain), including Tongzhou,
Shunyi and Daxing District; (4) Outer suburb (in semi-mountainous
areas), including Pinggu, Changping and Fangshan District; and (5)
Outer suburb (in mountainous areas), including Huairou, Mentougou,
Yanqing and Miyun District.

Beijing city has a mosaic of complex landscape types. Under the
comprehensive influence of the natural environment and social
economy, urban construction land, suburban cultivated land and outer
suburban ecological land in Beijing City exhibit a circular structure
with the downtown as the core, and this structure is also consistent with
the terrain of Beijing City. Construction land accounts for 20.92% of the
total area in Beijing City. The suburb plain areas are dominated by
cultivated land, and most of the mountainous areas in the northwest
outer suburb are forest land, accounting for 13.93% and 46.18% of the
total area of Beijing City, respectively in 2010.

Beijing City is the center of China's political activity, culture, science
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