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A B S T R A C T

Accurate estimation of gross primary production (GPP) of ecosystem is needed to evaluate terrestrial carbon
cycle at various spatial and temporal scales. Eddy covariance (EC) technique provides continuous measurements
of net ecosystem CO2 exchange (NEE) and can be used to separate GPP from NEE in real time series. However,
seasonal and inter-annual variation and consequently ecosystem carbon budget is still very difficult to simulate
from climatic and environment. To address this limitation, we develop a growing season indicator (GSI) based on
low temperature and soil water stress to model and predict intra and inter-annual dynamic of gross primary
productivity (GPP). Validation of this new index was conducted using continuous six-year consective EC mea-
surement from 2004 to 2009 at a Tibetan alpine meadow. Simulated GPP agreed well with the observed GPP in
terms of seasonal and inter-annual variation. The six-year correlation coefficients on seasonal scale between GSI
and scalar GPP derived from EC reached more than 0.85 no matter in dry years or wet years. In addition, the
temporal GPP estimation derived from GSI model was quite similar to those from observed values by EC
measurement. Moreover, accumulated GSI values can predict annual variability of net ecosystem production
(NEP). Higher yearly accumulated GSI corresponded to more annual NEP. When cumulative GSI arrived up to
92, the target ecosystem was a carbon sink. This is probably a threshold which Tibetan alpine meadow changes
from carbon source to carbon sink. It is indicated that the GSI model is a simple, alternative approach to esti-
mating GPP and has the potential to simulate spatial GPP in a larger scale. However, the performance of GSI
model in other vegetation types or regions still needs a further verification.

1. Introduction

Gross primary production (GPP), is defined as the sum of the pho-
tosynthesis carbon uptake by primary producers (Chapin et al., 2002).
It is the first step of carbon input from atmospheric CO2 to terrestrial
ecosystem and a key component of carbon cycle in ecosystems (Hall and
Scurlock, 1991; Scurlock and Hall, 1998; Yuan et al., 2010). Quanti-
fying GPP at regional and global scale is necessary to understand the
capacity of ecosystems in sequestering carbon (Beer et al., 2010; Gao
et al., 2014; Gitelson et al., 2006; Kanniah et al., 2009). Quantifying

and predicting the GPP of ecosystems have so far received more con-
cerns in global change studies (Canadell et al., 2000; Li et al., 2013).
However, it is far more difficult to do so because a variety of en-
vironmental and internal drivers interact to influence GPP at different
growth stages (Ito et al., 2005).

At local scales, the most prominent method of measuring GPP is the
use of data of eddy covariance (EC) instrument observations (Baldocchi
and Dennis, 2003; Baldocchi et al., 2001). Although EC technique has
been proven to be important in estimating carbon flux at site scale, its
measurement only provides very limited CO2 fluxes over footprints with
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restricted-size and varied shape. So it is difficult to extrapolate the GPP
to a larger scale with scarce sites and limited observational data,
especially in the remote high-altitude areas, like the Tibetan Plateau.
Moreover, scaling up those CO2 flux measurements from site level to
regional or global scales is challenging because of large spatial het-
erogeneity (Asner et al., 2012; Belshe et al., 2012) and interactions
among ecosystems (Chen, 2006).

To address these limitations, models have been developed for esti-
mating GPP at different spatial and temporal scales (Ito et al., 2005;
Kalfas et al., 2011; Luo et al., 2001; Xiao et al., 2004). These models are
mainly divided into two categories. One is based on light use efficiency
(LUE) approach to simulate GPP such as CASA (Potter et al., 1993),
GLO-PEM (Goetz et al., 1999; Prince and Goward, 1995), vegetation
production efficiency model, and MODIS-GPP algorithm as well. The
other one is process-based biogeochemical models, driven by a multi-
layer database of climate, soil and vegetation types (Churkina and
Sprinz, 2003; Law et al., 2000; Xiao et al., 2004). The most widely used
regional model of GPP based on LUE concept (Monteith, 1972) in-
dicates that GPP is linearly correlated to the amount of absorbed pho-
tosynthetically active radiation (APAR) and the efficiency of vegetation
production (ε) (Ogutu et al., 2013). Although this method has been
popularly used at different spatial and temporal scales owing to its
easily accessible variables from Earth Observation data, uncertainties
still remain in the GPP output from the model (Keenan et al., 2012;
Kevin et al., 2012). For instance, the estimation of the LUE terms is
often difficult as it varies over a range of vegetation types and changes
with seasonal development and environmental conditions (Gower et al.,
1999; Sims et al., 2006). In addition, the relationship between the LUE
and climatic factors in different ecosystems are still not clarified, with
these relationships deriving from models rather than actual measure-
ment (Garbulsky et al., 2010). Finally, the uncertainties in land cover
classification maps may result in further errors when it is propagated
into the LUE based models (Ogutu et al., 2013; Zhao et al., 2005).

It is therefore imperative to establish a simpler model structure with
fewer input variables without sacrificing the modelling accuracy of GPP
(Goetz et al., 1999; Yang et al., 2013; Zhang et al., 2015). However,
models above-mentioned require complicated calculations and in-
troduce many indices, such as data from MODIS and environmental
factors (Li et al., 2007; Yan et al., 2015). In this study, a growing season
index (GSI) model using only a set of common hygrothermal conditions
interacting to limit GPP is developed to simulate the seasonal and inter-
annual variability of GPP, and to predict annual carbon budget of
ecosystem. GSI is a simple, generalized index derived from temperature,
water and photoperiod limitation to simulate phenological responses to
climate change (Jolly et al., 2005). We follow this thought to develop
the seasonal temperature and hydrological controls of GPP in order to
predict inter-annual variation of net ecosystem CO2 exchange (NEE)
and carbon budget.

The Tibetan Plateau is mostly covered by alpine meadow and
steppe, which are recognized as fragile and sensitive ecosystems in
response to climate changes (Zheng et al., 2000). Due to low tem-
perature and low precipitation, gross primary production is low in most
of the alpine vegetation (Hui et al., 2004). However, PAR is not a
constraint of primary production on the Plateau (Zhang et al., 2000).
Considering thermo-hydrological imprint in driving primary production
rather than light constraint, we simply develop a low temperature and
soil water stress constrained GSI index to model GPP and predict NEE in
the case of a typical alpine meadow on the Tibetan Plateau. The ob-
jectives of this study are to: 1) simulate seasonal dynamics and inter-
annual variability of GPP over dry, normal and wet years, using GSI
index; 2) predict annual carbon budget using accumulated GSI values.

2. Materials and methods

2.1. Site description

The study site is located at Damxung Alpine Meadow Research
Station, one of the ChinaFlux sites (91°05′E, 30°51′N, 4333 m a.s.l), in
the south-face slope of Nyainqentanglha Mountains, northern Tibetan
Plateau. A detailed site description is available in literatures (Shi et al.,
2006; Zong et al., 2015). The site is characterized by intense solar ra-
diation, low air temperature and large daily temperature difference
(Fan et al., 2011) and low soil moisture, belonging to a semi-arid alpine
climate. The growing season starts in May and ends in September. The
vegetation type is an alpine steppe meadow, comprising dominant
species of Kobresia pygeama, Stipa capillacea, Carex montis-everestii, and
accompanying species K. capillofolis, Anaphalis xylorhiza, Potentilla bi-
furca Linn (Shi et al., 2006)

2.2. EC measurements

CO2 fluxes, sensible heat, latent heat and microclimate were mea-
sured continuously with the eddy covariance technique from 2003 on.
The EC system was installed at two meter above the ground surface,
consisting of open-path infrared gas analyzers (model LI-7500, LICOR,
Lincoln, NE, USA) and three-dimensional sonic anemometers (Model
CSAT3, Campbell Scientific, Logan, UT, USA). Signals were recorded at
10 HZ by a CR5000 datalogger (Model CR5000, Campbell Scientific)
and then block-averaged over 30-min intervals for analysis and ar-
chiving. Profiles of environmental factors, such as air temperature
(Ta, °C), relative humidity (RH, %), precipitation (PPT, mm), photo-
synthetically active radiation (PAR, μmol m−2 s−1), soil temperature
(Ts, °C) and soil moisture (SWC) at different depth and soil heat flux
were also measured.

Gap-filling of lost data is important prerequisite to control data
quality and ensure data reliability when extreme weather, power supply
and equipment failure happen. The methods of data preprocessing and
gap-filling include spike removal (± 3σ), coordinate rotation and
Webb-Pearman-Leuning (WPL) correction etc. The data in rainy days
and the data during nighttime with μ* < 0.15 m s−1 was discarded
(Yu et al., 2008). The missing data could be filled by the nonlinear
relationship established between carbon fluxes and the environment
factors (Yu et al., 2008).

The carbon fluxes (Fc) can be filled by the exponential function with
Ts in the non-growing season (from November to next April) and the
nighttime NEE (PAR < 1 μmolCO2 m−2 s−1) in the growing season
(from May to October). The missing NEE during nighttime and daytime
respiration Re is filled by Eq. (1).

Fc = R10 Q10 ((Ts − Tref)/10) (1)

Q10 = exp (10b1) (2)

Where Fc is carbon fluxes of μ* > 0.15 m s−1 during nighttime; R10

(μmol CO2 m−2 s−1) is the ecosystem respiration rate at 10 °C; Q10 is
the sensitivity coefficient of respiration, i.e. the increasing multiple of
respiration rate while the soil temperature was increased by 10 °C; Tref
is the reference soil temperature at 10 °C; b1 is a temperature coeffi-
cient.

The missing daytime NEE can be described via the rectangular hy-
perbolic function (Eq. (4)) between daytime NEE and PAR.

Fcday = Fmax*α*PAR/(αPAR + Fmax) + R (3)

In which, Fmax (μmolCO2 m−2 s−1) is the maximal ecosystem assim-
ilation; α (μmol CO2·μmol−1·photon−1) is apparent quantum yield; R
(μmol CO2 m−2 s−1) is daytime ecosystem respiration.
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