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A B S T R A C T

Landscape connectivity estimates are widely used to inform species conservation management. However, al-
though many landscapes and species behaviours change over time, such as between seasons, the vast majority of
studies view connectivity as static. Calls have therefore been made to use multiple connectivity estimates to
adequately capture periodic (e.g., seasonal) temporal changes. These periodic temporal changes are also in-
fluenced by stochastic perturbations, such as extreme weather events, and this variability is likely to increase due
to ongoing climate change. We aimed to investigate: 1) how variability interacts with periodic landscape
changes to alter connectivity estimates, and 2) how these alterations change over longer time-periods. To
achieve this we used a virtual ecology approach in which we simulated 100 landscapes. Each simulation ran for
20 seasons with the landscape experiencing regular seasonal changes. Each simulation was then rerun five times
with increasing levels of variability super-imposed on the seasonal dynamics. Connectivity for each landscape
and every season was calculated using least-cost paths modelling, and the differences between connectivity
estimates calculated. We found that the variation in connectivity estimates between seasons increased with
temporal variability. Differences in connectivity accumulated over time, meaning that as the variability in-
creased connectivity estimates changed more quickly and by larger amounts. Our study demonstrates that in-
creasing temporal variability will become a challenge for the successful use of static connectivity estimates.

1. Introduction

Understanding how organism movements are impacted by landscape
features is key to identifying areas in need of protection or rehabilitation
(Donald and Evans 2006; Rudnick et al., 2012). While not universal (e.g.,
see Haddad et al., 2014), a number of benefits can result from increasing
an organism’s ability to move through a landscape, including increased
gene flow (McRae and Beier 2007; Cushman and Lewis 2010) and de-
creased risk of local extinction (Stelter et al., 1997; Keymer et al., 2000).
As a result, obtaining a measure of landscape connectivity – that is, the
extent to which landscape structure (composition and configuration)
facilitates or impedes movement through a landscape (Taylor et al.,
1993) – is a key goal for many conservation managers (Rayfield et al.,
2011). However, directly measuring connectivity is difficult and costly
(Kindlmann and Burel 2008; Zeller et al., 2012). Therefore a range of
indirect connectivity estimation techniques have been developed, many
of which are based around cost-surfaces, raster representations of land-
scapes that characterise the difficulty for an individual of some species of
interest to traverse a grid cell (Etherington 2012).

A number of studies have investigated the sources (e.g., error in the
underlying classification of remotely sensed imagery used in habitat
mapping, misestimated cost values for different habitat types) and
impacts of uncertainty on connectivity estimates and have developed
methods to mitigate them (Quinby et al., 1999; Kautz et al., 2006; Beier
et al., 2009; Graves et al., 2012; Simpkins et al., 2017). Most of these
studies have focused on the spatial uncertainties in estimating con-
nectivity in temporally static landscapes (Zeigler and Fagan 2014). This
focus on the purely spatial aspects of connectivity is an understandable
initial step and has resulted in the development of useful techniques
with which to identify and reduce uncertainty. However, an emphasis
on the spatial aspects of uncertainty has meant that there has been
relatively little work investigating the temporal aspects of connectivity
and associated uncertainties (Zeigler and Fagan 2014; Mui et al., 2016).

Both landscape structure and organism behaviour exhibit temporal
variability (Fahrig 1992; Mui et al., 2016). This dynamism has long
been recognised in metapopulation studies (e.g. Johst et al., 2002;
Akçakaya et al., 2004; Snäll et al., 2005), although this understanding
has been largely applied to habitat patches rather than the surrounding
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matrix (Zeigler and Fagan 2014). Connectivity between habitat patches
may, however, shift dramatically through time with connections
opening and closing due to changes in landscape structures or in how an
organism perceives the landscape (Wimberly 2006). Changes in con-
nectivity due to landscape structural change are exemplified by
ephemeral waterways linking permanent waterbodies, with con-
nectivity increasing when waterways are filled but declining when they
dry out (e.g. Bishop-Taylor et al., 2017; DeAngelis et al., 2010; Kerezsy
et al., 2013; Perry and Bond 2009). Connectivity may also change in
response to changes in organism behaviour such as shifts in energetic
demands between seasons (e.g. Mui et al., 2016). Behavioural changes
may occur in the presence of a heterospecific species; for example some
avian species in Florida increase movements between habitat patches
over risky landscapes in the presence of tufted tit-mice (Baeolophus bi-
color) (Sieving et al., 2004). Connectivity changes may occur regularly
(i.e., periodically) over short timespans, such as seasonal changes, and
these changes can be important for conservation management planning.
These connectivity changes may be especially important in highly dy-
namic landscapes, such as agricultural areas (Burel and Baudry 2005),
where connectivity will be shifting near constantly.

Relative to a static snapshot of a landscape, connectivity may
change through time in a number of ways. Connectivity can increase
relative to some initial estimate if low-cost connections between points
in the landscape develop or high-cost barriers are removed. For ex-
ample, the removal of late successional forest during clearcutting en-
hanced inter-patch connectivity for the marsh fritillary butterfly
(Euphydrus aurinia) because it made the matrix more structurally si-
milar to habitat patches (Wahlberg et al., 2002; Zeigler and Fagan
2014; Blixt et al., 2015). Connectivity may also decrease relative to an
initial estimate due to increases in the distance between habitat areas,
increased difficulty in traversing the matrix, or the formation of bar-
riers, such as occurs when connecting waterways dry out (e.g. Roe
et al., 2009). It is, therefore, important to attempt to develop multiple
connectivity measures for a landscape to capture regular (e.g. seasonal)
changes over the time-period of interest (Mui et al., 2016). However,
generating multiple connectivity estimates is likely to be difficult and
costly because it requires high-resolution landscape and movement
data. Due to the difficulty and costs involved in their creation it is
important that any connectivity estimate calculated with the goal of
capturing regular changes is able to predict the size and direction of
connectivity changes for as long a timespan as possible.

Being able to predict periodic changes in connectivity (e.g. due to
seasonal hydrological dynamics) is becoming increasingly difficult
under ongoing climate change. Increases in the energy in the atmo-
sphere along with increasing air and water temperatures, push local
precipitation regimes towards their extremes, amplify the frequency of
extreme weather events, and alter disturbance regimes (Solomon et al.,
2009; Turner 2010; Pachauri et al., 2014). These changes can increase
the variability of systems and may cause connectivity to shift in un-
predictable ways that may enhance regular seasonal changes or over-
ride them altogether. Increasing variability may reduce the timespan
over which a set of connectivity estimates are useful, particularly in
ecosystems that are highly sensitive to these changes.

We investigated the robustness of connectivity estimates generated
for simulated landscapes experiencing regular (seasonal) changes in
connectivity in the context of differing amounts of inter-seasonal
variability. We focused on two aspects of connectivity change: 1) how
do differing levels of variability alter connectivity estimates between
seasons and, 2) how do these alterations accumulate through multiple
seasons? In order to investigate these questions we adopted a virtual
ecology approach (Zurell et al., 2010). We simulated a number of cost-
surfaces that served as our baseline landscapes. Each surface then un-
derwent cost changes across multiple seasons with various amounts of
inter-seasonal variability superimposed on the underlying seasonal
dynamic. The connectivity of each surface for every season was then
estimated and the similarity between estimates calculated. The use of a

virtual ecology approach allowed us to investigate a large number of
different landscapes over multiple seasons with a large degree of con-
trol as to the amount of variability introduced.

2. Materials and methods

2.1. Generation of initial cost-surface

Cost-surfaces were made up of a 100×100 cell regular grid gener-
ated using the random clusters nearest-neighbour neutral landscape
function in the NLMpy package in Python V2.7. (Saura and Martínez-
Millán 2000; Etherington et al., 2014). We used this neutral landscape
function because it approximates the patchy or fragmented landscapes
in which connectivity studies are often conducted (Zeller et al., 2012).
Cost-surfaces were divided into 10 element classes. Each surface ele-
ment class (i.e., habitat type) was assigned a cost value corresponding
to the surface class generated by the random clusters algorithm. Cost
values ranged from 10 to 100. Various spatial arrangements were
generated by modifying:

1. The maximum cluster size (i.e. maximum number of cells in a single
cluster), determined by altering the proportion of cells selected to
form unique clusters in the random clusters algorithm. Proportions
ranged from 0.2 to 0.5.

2. The proportion of cells in a cost-surface that were of the lowest cost
class, the remainder of the surface was divided equally between the
other classes. Proportions ranged between 0.1 and 0.5.

We used Latin hypercube sampling to obtain even coverage across
the cost-surface generation parameter space (McKay et al., 1979),
sampling 100 points in the two-dimensional parameter space. Seasonal
changes were then applied to each of the 100 cost-surfaces for 20
seasons with no variability added; this seasonal process was then re-
peated across five different levels of variability.

2.2. Seasonal change and inter-seasonal variability

At the start of a model iteration (i.e. time 0) each cost-surface ele-
ment class was assigned a cost change value D, drawn from a uniform
probability distribution:

∼ −D U ( 5,5) (1)

The range of this distribution was selected to ensure that the rank
order of cost-surface elements did not change (although this assumption
may not hold in reality), while also ensuring that the mean cost of the
surface remained fairly constant. During the first season the cost change
value (D) for each element was added to the initial cost value (Ci) to
create a new cost value (Ci+1). In the following season the cost change
value (D) was subtracted from the cost value of the previous season
(Ci+1) to create a new cost value (Ci+2). The value of Ci+2 equalled the
value Ci of when no inter-seasonal variability was added.
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Where: Ci+t was the cost value of for the season t, Ci was the cost value
of the previous season, D was the cost change value,  was the set of
odd seasons, and  was the set of even seasons. This cycle of change for
alternate seasons continued throughout the model run, with each run
lasting 20 seasons (10 season pairs, hereafter termed ‘years’). A
minimum cost value of 0 was set to prevent negative cost values oc-
curring as these are uncommon in the literature and are difficult to
interpret biologically (Zeller et al., 2012).

In simulations where inter-seasonal variability was added a varia-
bility value V was drawn from a Gaussian distribution (μ = 0; σ= SD)
at the start of each season. The variability value (V) was redrawn for
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