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A B S T R A C T

Remote sensing monitoring of grassland degradation will make a clear of the grassland degradation status of
China. At the same time, quantitative assessment of the driving factors will benefit to the understanding of
degradation mechanism and grassland degradation control. In this study, net primary productivity (NPP) and
grass coverage were selected as indicators to analyze grassland degradation dynamics. And we designed a
method to assess the driving force of grassland degradation based on NPP. Specifically, the potential NPP and
LNPP (NPP loss because of human activities), which is the difference between potential NPP and actual NPP,
were used to calculate the contribution of climate and human factors to grassland degradation, respectively.
Results showed that grassland degradation area accounted for 22.7% of the total grassland area in China from
1982 to 2010. The contribution of climate change and human activities to grassland degradation was almost
equilibrium (47.9% vs 46.4%). Overall, on the grassland restoration, human activities were the dominant driving
factors, accounting for 78.1%, whereas the contribution of climate change was only 21.1%. However, there are
obviously spatial heterogeneous on driving factors. And the contribution of climate change was larger than
human activities. But for the grassland restoration, human activities were the dominant factors. Warm-dry cli-
mate was harmful to grass growth but useful restoration measurements were benefit to grassland restoration.
Methods in this study can be widely used in other regions of grassland degradation evaluation. The probability
distribution functions (pdfs) of habitat suitability were different for the 7 dominant grassland types. Among, the
pdfs of Imperata cylindrica (Linn.) Beauv. and Themeda japonica (Willd.) Tanaka was uniform distribution and
mainly distributed in the southeastern of China. The pdf of Phragmites australis (Cav.) Trin. ex Steud. was normal
distribution and widely spread all over of China. The pdfs of the Kobre siapygmaea C.B. Clarke and Stipa purpurea
Griseb were “leptokurtic shape” and concentrated in the Tibetan Plateau.

1. Introduction

Grasslands, one of the most common types of vegetation in the
world, account for nearly 20% of the global land surface (Scurlock and
Hall, 1998). Human food production and, to a lesser extent climate
change, have profoundly influenced grasslands (Conant et al., 2001).
China has 3.93 million km2 of grasslands, which account for about 40%
of China's total land area. However, approximately 866,700 km2 of
China’s grassland is degraded (Bao et al., 1998). Recent studies have
shown that nearly 90% of the grasslands in northern China are de-
graded to some extent (Nan, 2005). Grassland degradation is mostly
attributed to overgrazing and conversion of grassland to cropland as
well as unregulated collection of fuel and medicinal plants (Akiyama
and Kawamura, 2007). Furthermore, drought, locust attacks and rodent

activities as well as climate change contribute to grassland degradation
(Liu et al., 2004).

Grassland degradation is related to relevant issues such as declining
productivity, biodiversity loss, land degradation, and declining eco-
system services (Turner et al., 2001). Although the cause of grassland
degradation is complex, overgrazing is regarded as the leading cause
(Teague and Dowhower, 2003). Meanwhile, the changes in vegetation
and soil because of overgrazing are accompanied by a decrease in pri-
mary production of vegetation (Snyman and Fouché, 1991). Further-
more, climate change especially water and temperature, will influenced
the length of the growing season as well as physiological processes,
primary productivity, community composition, and plant diversity is
affected (Saleska et al., 1999; Levy et al., 2004; Lemmens et al., 2006).
In fact, Climate drying that has occurred in recent decades in north
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China adds further stress to the ecosystem (Chen and Tang, 2005).
To alleviate the multi-faceted environmental degradation, the

Chinese government has launched several ecological restoration pro-
grams. Especially the Grain to Green Program (GTGP) and Returning
Grazing Land to Grassland Program (RGGP) have obtained considerable
achievement and deeply affected the structure and function of grassland
ecosystem (Liu et al., 2008; Wang et al., 2011). GTGP aims to convert
cropland to forest and grassland in fragile areas, initiated since
1999(Ferraro and Kiss, 2002), whereas RGGP initiated since 2003, aims
to alleviate grazing pressure in degraded grassland through forbidding
grazing, rotational grazing (Tong et al., 2004). Long periods of for-
bidden grazing are expected to increase plant coverage (Wang et al.,
2011), and previously degraded grasslands in Inner Mongolia (IM) have
been restored to their 1960s level after three years of protection from
grazing (Jiang et al., 2006).

Grassland degradation monitoring is traditionally studied by field
investigation, through which contributing factors are identified (Li,
1997). This method is inefficient and costly because grassland usually
covers a large spatial region (Asrar et al., 1986) and the results are
unreliable. By contrast, remote sensing monitoring is much more effi-
cient in assessing grassland degradation (Alfredo et al., 2002; Lu et al.,
2007). However, the contribution of the two factors on grassland de-
gradation is unclear at present. Therefore, a method to assess the
driving contribution is crucial to monitor grassland degradation.

Recent studies have analyzed human-induced vegetation degrada-
tion based on rainfall use efficiency (RUE) method (Prince et al., 2004;
Symeonakis and Drake, 2004). However, RUE is an oversimplified
empirical indicator and provides results that are not very reliable.
Several studies also have used vegetation dynamics to distinguish
human-induced desertification from climate change (Wessels et al.,
2007; Xu et al., 2010). As the vegetation dynamics are the most in-
tuitive manifestation of land degradation. Meanwhile, NPP is sensitive
to both climatic change and human activities (Schimel, 1995). In this
study, NPP and coverage were selected as vegetation dynamic in-
dicators to reflect grassland degradation situation. In order to calculate
the driving contribution, potential NPP and LNPP (NPP loss caused by
human activities), which is the difference between potential NPP and
actual NPP, are used to assess the relative roles of climate change and
human activities in grassland degradation.

There are 18 grassland types according to grassland classification
system of China in 1980s. The probability distribution function of each
grassland type can reveal the probabilistic structure of grassland type
and the universality findings across macro-geographical areas.
Therefore, it is fundamentally important to predict the distribution of
grassland species with low system energy. And the MAXENT is one of the
popular presence only species distribution model (SDMs) and widely
used in species prediction and biodiversity conservation.

This study aims to make clear the spatial-temporal characteristic of
grassland degradation in China and then determine the dominant factor
of grassland degradation. Meanwhile, the results of this study will
provide a deeper and more comprehensive knowledge of grassland
degradation as well as useful suggestions provide recommendations for
grassland resource management and sustainable development.

2. Materials and methods

2.1. Study areas

The Global Land Cover 2000 dataset (GLC, 2003) indicated that
China’s grassland area are 3.35 million km2, cover approximately 35%
of the country’s total land area, mainly distributed in the northwest
China and Tibet plateau. The nine provinces regions in China, namely,
IM, Xinjiang, Qinghai, Tibet, Gansu, Shaanxi, Ningxia, Yunnan, and
Sichuan, account for 94% of the total grassland in China (Fig. 1).

Northwest China is characterized by arid and semi-arid climate and
large temperature differences between day and night. The high

mountains with high precipitation, such as Altai, Tianshan, Kunlun, and
Qilian, block atmosphere circulation and create vast desert basins in the
rain shadow, such as Tarim, Junggar, and Qaidam (Shi et al., 2007).
Grassland degradation is serious because of the land use change,
overgrazing, and global warming.

Tibet Plateau is the highest contiguous area of the world with ap-
proximately 1.4 million km2 in land area perched 4500 m above sea
level (Huddleston et al., 2003). It is characterized by a subtropical to
temperate mountain climate unique to the Qinghai–Tibet Plateau (Chen
et al., 2006). Its surface temperature is relatively low because of its high
altitude. However, Tibet Plateau has been experiencing a warming
trend since the mid-1950s. Precipitation in Tibet Plateau is relatively
low and extremely variable in time and space (Ueno et al., 2001).
Natural vegetation in Tibet Plateau varies greatly and comprises forests,
grasslands, and shrubs, which are very sensitive to environmental
changes and human activities. To date, Tibet Plateau approximately has
425,100 km2 of degraded grassland, and severely degraded grassland
accounts for approximately 16% of the degraded grassland (Wang et al.,
2006a).

2.2. Data sources and processing

2.2.1. Normalized difference vegetation index (NDVI) data and post-
processing

We used NDVI data and geo-spatial meteorological data as input
data for the Carnegie–Ames–Stanford Approach (CASA) model to cal-
culate the actual NPP (Potter et al., 1993). The study period was from
1982 to 2010. Two types of NDVI dataset were used in this study:
moderate-resolution imaging spectroradiometer (MODIS)-NDVI
(MOD13A2) data with 1 km × 1 km spatial resolution, covering the
periods from 2001 to 2010 and downloaded from the earth observing
system data gateway (http://edcimswww.cr.usgs.gov/pub/
imswelcome/); and advanced very high-resolution radiometer global
inventory modeling and mapping studies (GIMMS)-NDVI data with
8 km × 8 km resolution, covering the periods from 1982 to 2006.

A regression model for the entire pixel was established based on the
two types of NDVI dataset (through the overlap time period of the two
types NDVI datasets and total of 72 months from 2001 to 2006) to
produce a long period of NDVI datasets from 1982 to 2010. Firstly,
Savitzky–Golay filters were used to smooth the NDVI data and reduce
image noises. Secondly, the nearest neighbor method was used to re-
solve the different spatial resolutions of the two types of NDVI dataset.
Finally, Maximum-value compositing was used to merge the
MODIS_NDVI value from 16 and GIMMS_NDVI 15 days to produce the
monthly NDVI datasets. The two NDVI products were re-projected to
Albers equal area projection based on the WGS-84 datum using ArcGIS
V10.1 software (ESRI, California, USA).

2.2.2. Meteorological data
Meteorological data from 1982 to 2010, including average monthly

temperature and precipitation for 680 stations as well as total solar
radiation data for 102 stations, were obtained from China
Meteorological Data Sharing Service System. Ordinary Kriging inter-
polation was used to interpolate the meteorological data into grid at
1 km × 1 km spatial resolution. The driving meteorological data for the
Miami memorial model to estimate the potential NPP (Lieth, 1975)
were annual temperature and precipitation. This can be calculated
through incorporating the 12 month temperature and precipitation.

2.2.3. Field survey of NPP
We sampled 51 sites across northwest China from April to August of

2009. At each site (20 m × 20 m), we set four quadrates (5 m × 5 m)
and marked as S1, S2, S3, S4. In order to calculate the NPP of all plants,
we investigated twice in the quadrates, early April in quadrate S1 and
S3, and later August in quadrates S2 and S4. The biomass increment for
grassland was obtained by the difference between the maximum
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