
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Articles

Monitoring riverine thermal regimes on stream networks: Insights into
spatial sampling designs from the Snoqualmie River, WA

Amy Marshaa,b,⁎, E. Ashley Steelb, Aimee H. Fullertonc, Colin Sowderd,b

a School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195 USA
b Statistics, PNW Research Station, USDA Forest Service, 400 N 34th Street, Suite 201, Seattle, WA, 98103, USA
c Northwest Fisheries Science Center, NOAA Fisheries Service,2725 Montlake Blvd. East, Seattle, WA, 98112 USA
d Department of Statistics, University of Washington, Seattle, WA, 98195 USA

A R T I C L E I N F O

Keywords:
Water temperature
SSNM
Streams
Rivers
Spatial autocorrelation
Monitoring

A B S T R A C T

Understanding, predicting, and managing the spatiotemporal complexity of stream thermal regimes requires
monitoring strategies designed specifically to make inference about spatiotemporal variability on the whole
stream network. Moreover, monitoring can be tailored to capture particular facets of this complex thermal
landscape that may be important indicators for species and life stages of management concern. We applied
spatial stream network models (SSNMs) to an empirical dataset of water temperature from the Snoqualmie River
watershed, WA, and use results to provide guidance with respect to necessary sample size, location of new sites,
and selection of a modeling approach. As expected, increasing the number of monitoring stations improved both
predictive precision and the ability to estimate covariates of stream temperature; however, even relatively small
numbers of monitoring stations, n = 20, did an adequate job when well-distributed and when used to build
models with only a few covariates. In general, winter data were easier to model and, across seasons, mean
temperatures were easier to model than summer maximums, winter minimums, or variance. Adding new sites
was advantageous but we did not observe major differences in model performance for particular new site lo-
cations. Adding sites from parts of the river network with thermal regimes which differed from the rest of the
network, and which were therefore highly influential, improved nearby predictions but reduced model-esti-
mated precision of predictions in the rest of the network. Lastly, using models which accounted for the network-
based spatial correlation between observations made it much more likely that estimated prediction confidence
intervals covered the true parameter; the exact form of the spatial correlation made little difference. By in-
corporating spatial structure between observations, SSNMs are particularly valuable for accurate estimation of
prediction uncertainty at unmeasured locations. Based on our results, we make the following suggestions for
designing water temperature monitoring arrays: (1) make use of pilot data when possible; (2) maintain a dis-
tribution of monitors across the stream network (i.e., over space and across the full range of covariates); (3)
maintain multiple spatial clusters for more accurately estimating correlation of nearby sites; (4) if sites are to be
added, prioritize capturing a range of covariates over adding new tributaries; (5) maintain a sensor array in
winter; and (6) expect reduced accuracy and precision when predicting metrics other than means.

1. Introduction

Understanding, predicting, and managing the spatiotemporal com-
plexity of stream thermal regimes on entire stream networks requires
carefully designed monitoring strategies. Water temperature regimes on
stream networks, influenced by incoming solar radiation, groundwater
and atmospheric inputs, as well as a wide range of landscape features
such as elevation, human development, riparian vegetation, and geo-
morphology (Caissie, 2006; Webb et al., 2008), vary within a day and
across seasons. These temporal patterns are distributed spatially, with

some tributaries experiencing, for example, large daily fluctuations in
water temperature during summer and other tributaries experiencing
dramatic annual fluctuations (Steel et al., 2016). Capturing the fine-
scale temporal variability in temperature at many discrete locations on
one stream network is possible using relatively inexpensive in-stream
sensors. Site-based measurements can then be used to interpolate par-
ticular facets of the thermal regime, e.g., mean summer temperature, to
unsampled parts of the network as well as to estimate the effect of
variables believed to control water temperature. These models of
thermal regimes on stream networks can help identify suitable habitats,
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prioritize management actions, estimate compliance with legal reg-
ulations, and indicate relationships between watershed and instream
condition.

As budgets for research, management, and conservation efforts re-
main limited, new guidance is needed for designing efficient mon-
itoring arrays (a set of spatially distributed monitoring sensors) that
capture the spatiotemporal complexity of thermal regimes on the
stream network. Moreover, practitioners may wish to understand and
predict one or more specific indicators that are of importance for target
species and life stages or for protecting thermal regimes through reg-
ulatory thresholds. For instance, summer maximum temperatures at
least partly determine growth and survival of juvenile salmonids
(Satterthwaite et al., 2009) and upriver migration success for returning
adults (Martins et al., 2011). These relatively well-understood physio-
logical relationships have ensured that summer maximum temperature
is one of the most commonly evaluated facets of water temperature
regimes. However, other facets of the thermal regime may be equally
important for species viability. For example, daily fluctuations in winter
temperature, when salmonid eggs are incubating in the gravel, are
correlated with fry emergence phenology (Steel et al., 2012). Without
data on winter variance, ecologists and managers may not be able to
account for (or even question) its effect on later life stages. Future
monitoring designs may need to be tailored to specifically capture
particular facets of the thermal regime and seasons or time windows of
interest.

Spatial stream network models (SSNMs) can be fit from water
temperature data that were originally collected for other purposes (e.g.,
Isaak et al., 2011) and not necessarily designed purposefully for
building models of water temperature across entire networks. However,
ad hoc datasets may not adequately represent spatiotemporal variation
in thermal regimes at appropriate scales for managing thermally sen-
sitive species and water uses. Researchers therefore need guidance on
necessary sample sizes and best locations for placing additional loggers
that will improve predictions and/or estimation of model parameters.
Using toy and simulated stream networks, Som et al. (2014) suggest
that effective sampling designs should include sites along the full range
of important environmental gradients, in major tributaries, in spatial
clusters of sites, and at the outlet and headwaters of the stream net-
work. Li (2009) and Zimmerman (2006) found that clustered designs
and a mix of space-filling and clustered designs were optimal for similar
situations. Falk et al. (2014), using a combination of simulated data on
simulated networks and empirical data from the Lake Eacham basin in
Queensland, Australia, found that optimal designs for prediction were
distributed fairly evenly over the network but that optimal designs for
parameter estimation were somewhat clustered.

In this paper, we use empirical data to expand on the work con-
ducted by Som et al. (2014) and others. We provide practical guidance
on the design of monitoring arrays for accurately modeling and pre-
dicting particular indicators within complex thermal landscapes. We
assess predictive accuracy and estimation of covariate effects from

Fig. 1. Map of Snoqualmie River, Washington, USA. Sites withheld to test predictive accuracy in resampling analyses, evaluating effect of sample size, and comparing modeling
approaches (Analysis I and III; Table 1; Fig. 2) are identified with an inner dot. Sites systematically added to explore how the addition of particular sets of sites affects model performance
(Analysis II; Table 1) are identified with solid symbols: star, triangles, pentagons, circles. Sites in which model performance was evaluated in Analysis II are labeled with a short site name
which is also used in Fig. 5 and Fig. 6. Time series of temperature data for five sites associated with the confluence of the Tolt and Snoqualmie Rivers are inset to display differences in
data for nearby sites. The two sites added in Analysis II (Table 1, Fig. 5, and Fig. 6) for the Tolt River confluence are identified as solid triangles in inset which, unlike the triangles in the
main figure, represent just one site each.
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