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A B S T R A C T

Increasing sound in the ocean from human activity potentially threatens marine animals that use sound to
communicate, detect prey, avoid predators and function within their ecosystem. The detection and classification
of sound produced by marine animals, such as whales and fish, is an important component in noise mitigation
strategies, while also providing valuable insights into their ecology. Traditionally, visual surveys are conducted
to assess how these animals utilize a specific area, often underestimating the number of individuals as they don’t
spend much time at the surface. Long-term passive acoustic monitoring efforts have become more prevalent to
monitor such animals. The large datasets collected can be impractical to manually process, necessitating the
development of automated detection methods, which often produce mixed results owing to the broad frequency
range and variable duration of many biological sounds. Here we describe a novel approach for automated de-
tection of underwater biophonic sounds employing hidden Markov models (HMM). Acoustic data was collected
at a single listening station in Hauraki Gulf, from October 2014 to April 2016. HMM detection models were
developed for Bryde’s whales (Balaenoptera edeni) that were used as a model organism because they are no-
toriously hard to study with traditional visual surveys and produce a characteristic call. Bryde’s whale calls also
directly overlap the sounds of anthropogenic activity, in particular the sound of vessels transiting to the busiest
port in New Zealand; therefore monitoring whale calls is of utmost importance when confronting increasing
sound in the ocean. Vocalizations were detected with a sensitivity of 77% and false positive rate of 23%. Bryde’s
whale vocalizations were detected on 11% of all recordings. Overall, there were significantly more detections
during summer (n = 1716) than winter (n = 447), and significantly more during the day (n = 1991) compared
to night (n = 1264). This study shows the feasibility of using HMMs on long-term acoustic datasets. The method
has the potential to be used for a wide range of soniferous animals who, like the Bryde’s whale, also produce
unique sounds. The detection method would be particularly useful for mitigation and management strategies of
species that are difficult to detect using traditional visual methods.

1. Introduction

Increasing levels of anthropogenic activity, such as shipping, has
changed the acoustic soundscape of many marine and terrestrial en-
vironments (Merchant et al., 2016; Miksis-Olds and Nichols, 2016).
Ecologists and managers alike are concerned that the increasing sound
levels in the world’s oceans may be threatening marine animals that use
sound for everyday subsistence (Erbe, 2012; Hawkins and Popper,
2017). However, one of the most difficult problems faced by those
charged with ecosystem management is decision making in the absence
of essential information on the spatial and temporal patterns of species
of concern. Passive acoustic monitoring (PAM) provides an ecological
indicator for how soniferous animals use their natural habitat as well as
how they may react to anthropogenic sound (Dunlop, 2016; Parks et al.,

2016; Stafford et al., 2017). PAM can be used in remote areas, during
day and night and in adverse weather conditions when other detection
methods are not possible (Mellinger et al., 2007a,b; Russo and Voigt,
2016). In recent years, autonomous hydrophones have increasingly
been deployed in regions of interest to record continuously for months
to years at a time (Radford et al., 2010; Miksis-Olds et al., 2013;
Nedelec et al., 2015). The large acoustic datasets collected prove almost
impossible to analyze with human operators (Aide et al., 2013),
therefore automated detection algorithms have become essential when
monitoring sounds over large spatial and temporal scales. Using auto-
mated methods, datasets can be processed relatively quickly and con-
sistently with human bias removed as well as sound beyond the human
hearing range identified with ease (Brown and Smaragdis, 2009).

There are many existing methods for automated detection of
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bioacoustic signals, including energy summation, matched filtering,
spectrogram correlation and dynamic time warping (Mellinger, 2004;
Munger et al., 2005). The performance of each often depends on the
characteristics of a particular species acoustic repertoire and behavior,
and the physical environment in which the sounds were recorded
(Munger et al., 2005; Russo and Voigt, 2016). Spectrogram correlation
is the most commonly used method of automatic detection (Mellinger
et al., 2007a,b) where a spectrogram is directly correlated with tem-
plate vocalizations. Spectrogram cross correlation was very effective in
identifying North Pacific right whale (Eubalena japonica) calls within
two years of acoustic monitoring in the Gulf of Alaska (Munger et al.,
2005). However, biological sounds often have a complex nature with
variable frequency range and duration, and the cross correlation ap-
proach is unable to adapt to changes in duration and alignment.

Hidden Markov models (HMMs) are widely adopted in speech re-
cognition tasks because their flexibility allows sounds to be classified
from a series of given observations (Ren et al., 2009). A HMM is defined
as a statistical-state machine where each state represents a stationary
spectral configuration, and transitions between states represent spectral
changes over time (Ren et al., 2009). HMM approaches have been
successfully used to automatically detect birds (Somervuo et al., 2006;
Ranjard et al., 2016), fish (Vieira et al., 2015) and mammals (Scheifele
et al., 2015), often outperforming other detection methods (Weisburn
et al., 1993; Kogan and Margoliash, 1998; Brown and Smaragdis,
2009), because they account for the change in spectral characteristics
over time, unlike more common and straightforward classifiers (Ren
et al., 2009). HMMs can also cope with some sounds being extremely
common whilst others rare (Ren et al., 2009). For example, the HMM
approach detected 97% of bowhead whale (Balaena mysticetus) calls
compared to 84% for matched filter methods (Weisburn et al., 1993).
Matched filtering is a time series correlation method that uses synthetic
waveforms instead of recording examples (Weisburn et al., 1993).
Furthermore, HMMs were compared to dynamic time warping techni-
ques for zebra finch calls. Dynamic time warping measures the simi-
larity between time temporal sequences which may vary in speed, it is
therefore often used in speech recognition to cope with different
speaking speeds (Kogan and Margoliash, 1998). HMMs required more
training but outperformed dynamic time warping when tested with
noisy recordings that had confusing calls and notes (Kogan and
Margoliash, 1998).

The detection of specific sounds over a large spatial or temporal
scale is critical for supporting spatio-temporal management of ecolo-
gically important populations or species (Kalan et al., 2015; McDonald
et al., 2017; Williamson et al., 2017). Here, we investigate the potential
for using HMMs to detect cryptic soniferous species, such as the Bryde’s
whale (Balaenoptera edeni). Bryde’s whales produce a variety of voca-
lizations, including low frequency pulses, tonals, moans and down-
sweeps from 60 to 950 Hz (Oleson et al., 2003; Heimlich et al., 2005;
Rice et al., 2014; Roch et al., 2016). The relationship between geo-
graphic differences in vocalizations is unclear, but it has been suggested
different vocalizations may delineate different stocks (Širović et al.,
2014). In New Zealand, only long moans or down-sweeps have been
attributed to Bryde’s whales (McDonald, 2006; Constantine et al.,
2015). The down-sweep vocalization matches the description of Be3
calls from the eastern tropical Pacific (Oleson et al., 2003; Heimlich
et al., 2005) with little frequency modulation, frequency range
15–150 Hz and duration of 2.6 ± 0.8 s (Putland et al., 2017). There is
now sufficient description of the sound to support efforts for automated
acoustic detection. The stereotyped nature of the vocalization is ideal
because a HMM recognizer can be trained to detect these specific
characteristics.

From an ecological perspective, there has been limited research into
the temporal variation of Bryde’s whale vocalizations. In the eastern
tropical Pacific, none of the five phrase types recorded showed a con-
sistent seasonal pattern over the two years of monitoring (Heimlich
et al., 2005). Furthermore, in the Gulf of Mexico Bryde’s whales were

heard sporadically throughout the 10 months of recording although the
vocalization rate was significantly higher during dusk and night then
dawn and day (Širović et al., 2014). In New Zealand the resident en-
dangered population remains in close proximity to the Hauraki Gulf
year round (Wiseman et al., 2011; Constantine et al., 2015). Our ob-
jective was to use HMMs to investigate diel and seasonal trends of
Bryde’s whale vocalizations in a long-term passive acoustic dataset. We
then explored the potential implications of these findings for con-
servation and management efforts.

2. Materials and methods

2.1. Acoustic data

Passive acoustic monitoring was conducted in the Hauraki Gulf,
New Zealand; a large, island-studded embayment recognized for its
high biodiversity value as well as regular use by both recreational and
commercial boating activities (Kelly et al., 2014). Acoustic data was
collected using an omnidirectional hydrophone (ST202 Ocean Instru-
ments, NZ; www.oceaninstruments.co.nz) that was calibrated prior and
post deployment using a piston phone. The hydrophone was placed in
Jellicoe Channel on the outer border of the Hauraki Gulf Marine Park
(Fig. 1), from October 2014 to April 2016. This location was chosen
because using normal mode propagation theory previous research in
the Hauraki Gulf has shown the cut-off mode in 50 m of water was
22 Hz (Tindle et al., 1978; Tindle, 1982). Therefore, at Jellicoe Channel
the low frequency Bryde’s whale vocalization (peak frequency 35 Hz)
would not be affected, whereas in shallower regions of the Gulf re-
cordings may distort the sound signal. Furthermore, Bryde’s whales
have been seen in the area during marine mammal surveys (Kozmian-
Ledward, 2014; Constantine et al., 2015). Bryde’s whale vocalizations
directly overlap anthropogenic sound from boat activity making mon-
itoring their calls of utmost importance for mitigation strategy (Putland
et al., 2017). The hydrophone was suspended 2 m off the seafloor and
retrieved using an acoustic release (Desert Star Systems; www.
desertstar.com). The hydrophone was pre-programed to sample at
144 kHz, 24 bits, for 2 mins every 20 min for the duration of each de-
ployment (Table 1).

2.2. Training and testing

All recordings during October 2014 (1184 recordings) were re-
viewed aurally and visually using scrolling spectrograms in Audacity®

(version 2.1.2) (Hanning window, Fast Fourier Transformation (FFT)
length = 1024 and then FFT length = 16384) and annotated using the
three categories: Bryde’s whale (w), vessel passage (v) or ambient
sound (a) (Fig. 2). Training files for building the automated recognizer
included all recordings with Bryde’s whale vocalizations during Oc-
tober 2014 (n = 94) as well as two full days of recordings (containing
vessel passages and ambient sound) to represent the variety of back-
ground sound recorded at the station (n = 144). The MatlabHTK
package (Ranjard et al., 2016) was used to load annotated recordings
and generate a series of hidden Markov model toolkit (HTK) re-
cognizers. According to the HMM principle (Young et al., 2006), each
defined window within an input sound file has a certain probability of
matching a specific state defined during the training stage of the re-
cognizer. Five different recognizers were built using a variety of dif-
ferent frequency ranges: 10–500 Hz, 10–1000 Hz, 10–2000 Hz,
50–1000 Hz and 50–2000 Hz and the default MatlabHTK parametriza-
tion of the sound signal, window size 30 ms and number of cepstral
parameters = 24 (Ranjard et al., 2016). The frequency ranges extended
beyond the high frequency of Bryde’s whale down-sweeps, because
vessel sound is prevalent across all frequencies whereas Bryde’s whale
vocalizations are not (Putland et al., 2017).

Every two minute recording from the new moon (7th) and full moon
(23rd) in November 2014 (144 recordings) was manually annotated
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