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a  b  s  t  r  a  c  t

Based  on  an  updated  and  comprehensive  global  NPP database,  an  artificial  neural  network  (ANN)  data
mining approach  was  used  to investigate  the  spatial  and  temporal  patterns  and  control  factors  on global
terrestrial  ecosystem  NPP  between  1961  and  2010.  Five  variables  (precipitation,  air  temperature,  leaf  area
index, fraction  of photosynthetically  active  radiation  and  atmospheric  CO2 concentration)  were  selected
and  integrated  to develop  a three-layer  back-propagation  (BP)  ANN  model.  The  results  indicated  that  the
ANN  method  is  capable  of simulating  and  predicting  the  NPP  of the  global  terrestrial  ecosystem,  yielding
a  simulation  accuracy  of  0.72  and  a prediction  accuracy  of  0.60.  The  estimated  global  mean  annual  NPP
was  approximately  61.46  Pg  C  between  1961  and  2010,  with  an  annual  increase  of  0.23  Pg C  and  a  total
increasing  of 10.14  Pg  C.  The  middle  and  high  latitudinal  zones  made  the  major  contribution  to the  total
NPP  increasing  with  percentage  of  87.5%  (8.87  Pg  C),  whereas  the  low  latitude  zone  made  the  remaining
contribution  (1.27  Pg C).  The  atmospheric  CO2 concentration  was  found  to be  the  dominant  factor  that
controlled  the interannual  variability  and  to  be  the  major  contribution  (45.3%)  of  global  NPP.  Leaf  area
index,  climate  and  fraction  of  photosynthetically  active  radiation  resulted  in  NPP  increases  of  21.8%,  18.3%
and 14.6%,  respectively.  Overall,  multiple  factors  jointly  control  the  variation  in  global  NPP, and  it  is  vital
to consider  the underlying  mechanisms  of  combined  environmental  effects  on  NPP  in  future  studies.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Net primary production (NPP) is a principal component in the
global biosphere carbon cycle and it represents the net carbon
fixed by the global plant community (Chapin et al., 2002). As a
fundamental attribute of the global biosphere, NPP plays an essen-
tial role in providing humans with necessary food, timber and
fibre (Vitousek et al., 1986; Costanza et al., 1998; Running et al.,
2004). Because NPP is a composite reflection of the combined cli-
matic, geochemical, ecological and human effects on the biosphere
(Nemani et al., 2002, 2003), it is sensitive to multiple environmen-
tal changes such as climate and atmospheric changes (Chapin et al.,
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2002). Therefore, to assess the spatial and temporal patterns of
NPP and to quantitatively analyse the relationships between NPP
and its related environmental factors, these factors have received
increasing attention in global change studies during the past sev-
eral decades (Piao et al., 2005; Hsu et al., 2012; Liang et al., 2015;
Pan et al., 2016).

Previous studies have indicated that the variability of NPP is
controlled by a broad range of biotic and abiotic factors operat-
ing mainly through changes in plant physiological activities and
phenology (Geider et al., 2001; Richardson et al., 2010; Stoy et al.,
2014; Xia et al., 2015). Climate change and increasing CO2 concen-
trations were recognized as the key factors in the change in global
terrestrial NPP (Melillo et al., 1993). Rising air temperatures, altered
precipitation patterns and elevated atmospheric CO2 interact with
each other and exert a combined impact on ecosystem structure
and function (Canadell et al., 2007). In addition to climate change
and the fertilization effects of rising atmospheric CO2, land use
change, such as afforestation and deforestation (Zhou et al., 2015),

http://dx.doi.org/10.1016/j.ecolind.2017.01.021
1470-160X/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.ecolind.2017.01.021
http://www.sciencedirect.com/science/journal/1470160X
http://www.elsevier.com/locate/ecolind
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2017.01.021&domain=pdf
mailto:peng.changhui@uqam.ca
mailto:qiuan.zhu@gmail.com
dx.doi.org/10.1016/j.ecolind.2017.01.021


246 P. Li et al. / Ecological Indicators 76 (2017) 245–255

and anthropogenic nitrogen deposition (Stevens et al., 2015) also
have an important effect on terrestrial NPP. Therefore, the complex
interactions between these factors in the global terrestrial ecosys-
tem pose a considerable challenge for NPP modelling studies. In
general, these interactions are not well known, and it is difficult to
attribute the relative contribution of multifactor global changes.

Empirical models have been used to quantify the relationship
between NPP and related environmental variables (Zaks et al.,
2007; Del Grosso et al., 2008; Cleveland et al., 2015), and it assume
that effects of environmental variables on NPP change are linear
and independent of each other. However, evidences from both field
experiment and theoretical analysis have shown nonlinear ecosys-
tem responses to the environmental changes (Berry and Bjorkman,
1980; Peng et al., 2013a), and highlighted the potential limita-
tions from the linear regression analysis. A considerable number
of ecosystem process models also have been applied to analyse
the spatiotemporal patterns of NPP and its responses to global
change in terrestrial ecosystems (Cramer et al., 1999; Pan et al.,
2014). However, huge uncertainties remain in the different ecosys-
tem models in estimating global NPP. Siegenthaler and Sarmiento
(1993) quantified the annual global NPP to be 51.97 Pg C, which
was much lower than the estimation of Sundquist (1993), who
estimated global NPP to be 60 Pg ; Cramer et al. (1999) conducted
a comparison of 17 process-based models, and the estimated
global NPP had a wide range of 44–66 Pg C yr−1, resulting from
how the water balance was represented in the models. Similarly,
Friedlingstein et al. (2006) found the differences in the same 17
global NPP models were due largely to the belowground processes
that cause different responses of NPP to multifactor global change.
Thus, the limitations of NPP estimation are largely attributed to
complicated processes in the biosphere, and the process models
have been unable to consider all of the complicated nonlinear
relationships involving ecosystem and environmental variables.
Compared with empirical models and process-based models, the
artificial neural network (ANN) method has the greatest potential
to address the nonlinear problems because of its accurate map-
ping capability (Liu et al., 2010). The ANN method is known for
its strengths in handling many types of prediction and classifica-
tion complexities. This method has been used successfully to map
global terrestrial N2O emissions (Zhuang et al., 2012) and to simu-
late methane emissions (Dengel et al., 2013; Zhu et al., 2013), the
soil organic carbon dynamics (Dai et al., 2014; Yang et al., 2014;
Were et al., 2015), and the C flux of a Chinese fir plantation in
subtropical China (Wen  et al., 2014).

Most of the field measurements of NPP have been conducted
and published for global terrestrial ecosystems during the past
several decades. The detailed observational data and the ANN
method may  offer an opportunity to analyse the effects of mul-
tiple environmental factors on global terrestrial NPP. In this study,
we synthesized 2196 measurements from a global compilation of
NPP data on global terrestrial ecosystems. We  chose a three-layer
back-propagation neural network (BPNN) method (Svozil et al.,
1997; Saxén and Pettersson 2006; Liu et al., 2012) to estimate
NPP and selected five key variables: including precipitation (Hsu
et al., 2012), air temperature (Clark et al., 2003), leaf area index
(Schloss et al., 1999), fraction of photosynthetically active radia-
tion (Bicheron and Leroy, 1999) and atmospheric CO2 concentration
(Norby et al., 2005), which are considered to be main factors con-
trolling the NPP dynamics of global terrestrial ecosystem (Chapin
et al., 2002). The main objectives of this study were to (1) examine
the performance of the ANN model in estimating the NPP of the
global terrestrial ecosystem, (2) analyse the spatiotemporal pat-
terns of global NPP during the period 1961–2010, and (3) quantify
the relative contributions of major environmental factors control-
ling the change in global NPP.

2. Materials and methods

2.1. Data

We  have collected and complied most of the available obser-
vational NPP data from the Oak Ridge National Laboratory (ORNL)
Distributed Active Archive Center database (http://daac.ornl.gov/
NPP/npp home.shtml). These study sites contain NPP measure-
ments from more than 30 countries and cover a range of vegetation
types and biomes. Each site contains a collection of NPP observa-
tional records (Bailey, 1989; Jager et al., 2000). These NPP observed
values were originally recorded as yearly measurements per unit
area.

To examine the potential effects of multifactor global change on
the variation of NPP, we collected environmental factors to develop
the ANN model, including climate, atmospheric CO2 concentrations
(CO2), fraction of photosynthetically active radiation (fPAR), and
leaf area index (LAI) for each site. These site-level data were first
retrieved from original records in ORNL and then complemented
with other spatially explicit data sets based on the geographic coor-
dinates and experiment dates of the measurements. For climate
data (monthly, half degree spatial resolution), we  used precipita-
tion (P) and air temperature (T), which were derived from newly
available CRU-TS climate forcing data (http://www.cru.uea.ac.uk/).
The half degree monthly atmospheric CO2 concentration (CO2) data
and the fraction of photosynthetically active radiation (fPAR) data
were derived from the Multi-scale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) (http://nacp.ornl.gov/MsTMIP.
shtml). The leaf area index (LAI) dataset used in this study was
from Global Land Surface Satellite (GLASS) LAI dataset, which con-
sists of time-series reflectance data generated from MODIS and
AVHRR (Xiao et al., 2014). Then, the global 0.5◦ LAI were generated
by aggregating three-hour intervals of 0.05◦ data from the GLASS
LAI dataset. To aggregate from a 0.05◦ cell size to 0.5◦ cell size, the
LAI data values for each 10 × 10 pixel block were then averaged to
create a single 0.5◦ pixel of new values. The maps of global major
biomes in this study (Fig. 1) were a combination of (1) the Terres-
trial Ecoregions of the World database (http://worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world), which includes
forest (including the three subtypes tropical, temperate, boreal for-
est and mixed forest), grassland, savanna, shrubland, tundra, desert
and cropland, and (2) global land cover maps (http://due.esrin.esa.
int/globcover/; 2009 version), which defines croplands and other
areas (including artificial surfaces and associated areas, water bod-
ies, and permanent snow and ice).

Finally, a total of 2196 datasets with complete records, contain-
ing both NPP values and the selected five environmental variables,
were used for developing the ANN model. The geographic distri-
bution of the collected 2196 datasets were presented in Fig. 1. The
detailed statistics on the NPP, P, T, LAI, fPAR and CO2 for each biome
type were summarized in Table S1.

2.2. Artificial neural networks

Neural networks use machine learning based on the concept
of the self-adjustment of the internal control parameter (Bishop,
1995; Rojas, 1996). Similar to the human brain, an ANN learns
from past experiences to solve new problems. When modelling
non-parametric relationships, a neural network uses the knowl-
edge gained from past experiences to build a codex of “neurons” to
make new decisions, classifications and forecasts (Lek and Guégan,
1999). Because of excellent data-mining ability, the ANN often has a
better performance than conventional experience methods (Moffat
et al., 2007; Moffat et al., 2010). In this paper, a back-propagation
network was used to conduct the relationship between the output
variable (NPP) and the input variables (five environmental factors).
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