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A B S T R A C T

We present a method to infer a straight-lines tree branch system from a given set of leaf positions and average
branching angles. Among an extensive set of possible branch systems constructed in the process, we choose the
one featuring the shortest total length, following an optimality hypothesis by Leopold (1971). The approach is
illustrated using empirical low-order skeletons from European beech. Our method further allows to assess, for a
given species or individual tree, to what extent its branching pattern accords to Leopold's hypothesis, which we
argue to be the case for beech. While yet facing issues of computational intensity for too many leaves, the
method can furthermore be used to complement existing tree structure reconstruction methods that otherwise
require a rudimentary skeleton as manual input.

1. Introduction

The reconstruction of tree structures based on information from
photographs (Shlyakhter et al., 2001; Tan et al., 2008) and point clouds
obtained via LiDAR (Zhu et al., 2008; Yan et al., 2009; Livny et al.,
2010; Preuksakarn et al., 2010; Raumonen et al., 2013) for computer
graphics or structural plant modelling has been an active research area
in recent years. The underlying data often merely captures tree's foliage
enveloping the crown, which requires additional processing to re-
construct the inner-crown branch system. Some of these methods re-
quire a rudimentary, low branching order tree skeleton as user input: in
the model by Neubert et al. (2007), a branch structure is formed by the
paths of points starting at the leaf positions and being transported down
to the stem base along a vector field that is defined based on an a priori
given trunk and primary branch structure. On the same basis,
Sakaguchi (1998) used L-systems to generate a more detailed branch
skeleton that fills a given crown envelope; Tan et al. (2008) proceeded
similarly. Our objective in this paper is to develop a method that allows
to construct a skeleton from scratch and can thus be used to comple-
ment the above-mentioned approaches. This ties in with similar recent
methods that have used a space colonisation algorithm (Runions et al.,
2007) and particle systems (Rodkaew et al., 2003; Owens et al., 2016)
to reconstruct realistic plant structures.

In his seminal article for the systematisation of tree structure,
Leopold (1971) noted that “by analogy [to river systems] it seems

possible that the branching patterns of trees and of other biologic forms
are governed by […] tendencies which are analogous to minimum
energy expenditure […]. In the case of trees it might be supposed that
[this] involves minimising the total length of all branches and stems”,
and hypothesised that “the form which is most probable also tends to
minimise the total length of all paths within the applicable constraints”.
Hence, for a given distribution of leaves, he assumes the minimisation
of the total length of the branch system and thus of wood mass, im-
plying a maximisation of leaf mass and thus future biomass production.
Leopold's point of view is teleonomic, in that it supposes the lower
hierarchical processes of branch longitudinal growth and ramification
to be governed by a higher hierarchical goal (Thornley and Johnson,
2000). This general approach of an assumed goal-directedness of
growth processes, often towards the maximisation of growth variables
(Dewar, 2010) is common in many plant models. Fisher (1992) and
Farnsworth and Niklas (1995) revisited architectural models in the
context of optimising light interception, while Mäkelä et al. (2002)
provided a review of functional teleonomic and optimisation models at
the plant level. Canell and Dewar (1994), Le Roux et al. (2001) and
McMurtrie and Dewar (2013) addressed teleonomy in the context of
carbon allocation models.

Here, we present a method for the reconstruction of a branch system
in terms of line segments based on a given set of leaf positions as well as
stem base, which may have been obtained from photographs or LiDAR
data, in a manner that is strongly based on Leopold's hypothesis. We
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first construct a set of possible branch systems that connect the leaf
positions to the stem base via line segments and bifurcations, and which
is essentially formed only under the constraint of given branching an-
gles. This set covers a large set of skeletons, of which, in the end, we
identify the system with the shortest total length.

2. Method description

We follow Honda (1971) in that branch segments are straight. A
necessary input for our method are branching angles, i.e. the angle
between a mother and daughter branch. We assume these to be only
dependent on branching order, which is an assumption common in
many functional-structural tree models (Takenaka, 1994; Perttunen
et al., 1996; Grote, 2002). It can principally be relaxed, e.g. by in-
troducing a dependence on the ratio of height and crown diameter of
the given leaf density as a global proxy for competition. Denote by φn

the bifurcation of an order n branch from an order n−1 branch in the
botanical (or Hack's) ordering system (Borchert and Slade, 1981).

The starting point of the following procedure is a given line segment
representing the trunk. In the first step we construct line segments
leading from the leaf positions to the trunk. In each following step, we
then construct new line segments that connect the leaves to branching
points on line segments formed in the previous step, at the given
branching angle. We thus construct progressively higher-order branches
until this is no longer possible. Finally, of all the possible branch sys-
tems generated in this manner, we chose the one with the shortest total
length.

Next, we describe the method in detail. Although the basic ideas are
generally intuitive, the formalism is at times rather cumbersome.
Figures along the text illustrate the specific steps for an exemplary set of
leaf positions.

2.1. Preliminary definitions

Let … ⊂ × +x x, ,1 m
2  denote the 3D leaf positions of a tree with a

trunk rooting, without loss of generality, in (0,0,0). For the sake of
convenience we assume x1 to denote the leaf at the tip of the stem (tree
top).

For later use, let n denote the set of ordered lists of length n,
composed of natural numbers. Elements of n will later be used to de-
scribe the topology of a skeleton reconstruction up to branch order n.
For lists = … ∈a a a an

n
1 2  and = … ∈b b b bm

m
1 2  , with ai,bi,n,m ∈ℕ, we

define the concatenation of a and b by
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Compatibility is a symmetric and reflexive but not transitive rela-
tion. The notion will become intuitive in the following sections.

For two points x,y ∈ℝ3 denote by x y and xy the line and line
segment through x and y, respectively. With

= + − ⋅ − ⋅ −
−
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y z, 2 denoting the orthogonal projection
of x onto the line through y and z, let
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be the oblique projection, where the angle that the line Px x( )φ
y z, draws

with the line y z is φ.

2.2. The sets of branching points and topological histories

In the following, we motivate the sets Gn
i and Tn

i , formally defined in
Eq. (1) and illustrated in Fig. 1. The set ⊂+Gn

i
1

3 contains all possible
points at which an order n+1 branch, that terminates at the leaf in xi,
bifurcates from an order n branch that was constructed in the preceding
iteration step. The latter, in turn, is given by a line segment between a
leaf in some xj and an appropriate branching point on an order n−1
branch, etc. Hence, branching points in the set +Gn

i
1 are oblique pro-

jections of the leaf in xi onto an order n branch that terminates at some
leaf in xj and starts at some lower-order branching point contained in
the set Gn

j. In order for such an oblique projection, given by +P x( )
G
φ

x i( ) ,n
j

k
n

j
1

for some k, to be indeed added to the set +Gn
i

1, it must satisfy the fol-
lowing two conditions. First, it is required to lie on the line segment
(not just the line) between xj and G( )n

j
k. Second, the potential new

daughter branch must not be longer than the part of the mother branch
leading from the potential bifurcation point to the leaf in xj. The latter
condition corresponds to the concept of apical dominance, which we
assume here.

The set ⊂+
+Tn

i n
1

1 captures the unique topological history of bi-
furcations of order n+1 branches terminating at the leaf in xi. For an
order n+1 branch leading to xi that bifurcates from a branch leading to
xj, the first two indices of +Tn

i
1 are ij, etc. By construction we have

=G T| | | |n
i

n
i . Formally, we have

Fig. 1. In step n>1, leaves are connected to branch structures established in the previous step in accordance with the criteria (2) and (3). Here we used φn=137.5° for all n. Below the
figure: Topologies corresponding to the branching points Gn

i . For instance, in step 3, a branch connection from x4 is drawn to a branch leading to x3 which, on its part, had been connected
to a branch to x1 in the previous step. Hence ∈ T431 3

4. For n ≥ 5, = ∅Tn
i for all i.
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